CORSO DI CHIMICA E PROPEDEUTICA BIOCHIMICA
PRIMA FACOLTA' DI MEDICINA E CHIRURGIA - CLM "B"
SAPIENZA UNIVERSITA' DI ROMA

 
 
     
 
PROPEDEUTICA BIOCHIMICA

LA REGISTRAZIONE DELLE PRESENZE IN MODALITA' TELEMATICA E' ATTIVA!
      Per registrare la tua presenza a questa lezione telematica, se il servizio e' attivo, devi inserire il tuo numero di matricola
La presenza sara' registrata soltanto se viene completata la lettura della pagina e vengono date risposte corrette ad almeno 3 dei 4 quiz presenti in fondo alla pagina. Se la lettura viene interrotta non e' possibile effettuare un salvataggio parziale. Ricorda di premere il tasto [invia] prima di lasciare la pagina. Se il servizio di registrazione della presenza e' attivo, riceverai un messaggio di conferma. Puoi utilizzare la pagina quante volte vuoi, anche senza registrare la presenza.
      Una sezione dedicata a domande e commenti e' stata aggiunta alla fine della pagina web; se vuoi puoi utilizzarla per inserire le tue domande o commenti. Le risposte, se necessarie, verranno inserire entro qualche giorno.

I GLICIDI

      I glicidi, chiamati anche zuccheri o saccaridi o carboidrati sono composti molto importanti per il metabolismo delle cellule. Hanno (spesso) la formula generale Cn(H2O)m alla quale si deve il nome di carboidrati o idrati di carbonio (come se fossero composti di carbonio e acqua, cosa ovviamente non vera). I glicidi sono presenti in natura nella forma di singole molecole contenenti da 3 a 7 (raramente fino a 9) atomi di carbonio (dette monomeri o monosaccaridi), oppure di polimeri o polisaccaridi (cioe' gruppi da alcune decine a molte migliaia di queste molecole legate chimicamente tra loro).
MONOSACCARIDI

      I monosaccaridi sono poli-idrossi aldeidi o poli-idrossi chetoni; i primi sono definiti aldosi, i secondi chetosi. I piu' importanti in biologia sono quelli con 3,5 e 6 atomi di carbonio.
      I capostipiti delle due serie degli aldosi e dei chetosi sono due zuccheri a tre atomi di carbonio, la D-gliceraldeide e l'1,3 diidrossi acetone:


      GLI ALDOSI
      Il piu' semplice degli aldosi e' la gliceraldeide, che possiede tre atomi di carbonio ed ha la formula bruta C3H6O3; il nome IUPAC di questo composto e' 2,3 diidrossi propanale. Poiche' il secondo atomo di carbonio della catena e' asimmetrico, e da luogo al fenomeno dell'isomeria ottica, esistono due varianti di questa molecola, la L-gliceraldeide e la D-gliceraldeide; soltanto la seconda e' presente nel nostro organismo. Infatti, con l'eccezione del solo diidrossi acetone (un chetosio), tutti i monosaccaridi presentano uno o piu' carboni asimmetrici ed hanno quindi isomeri ottici. L'isomeria ottica negli zuccheri e' descritta secondo la convenzione di Fisher.
      LA CONVENZIONE DI FISHER PER L'ISOMERIA OTTICA NEGLI ZUCCHERI. La convenzione di Fisher per scrivere il carbonio asimmetrico (gia' spiegata nelle lezioni sulla chimica organica) e' la seguente: si scrive la molecola con la catena carboniosa principale orientata dall'alto in basso e con il carbonio piu' ossidato in alto, e si adotta la convenzione che i sostituenti che si trovano in alto e in basso siano profondi rispetto al piano in cui si trova il carbonio asimmetrico. A causa dell'ibridazione sp3 del C asimmetrico, i sostituenti che si trovano a destra e a sinistra puntano ora verso l'osservatore. A questo punto il C asimmetrico ha la configurazione D se il sostituente orizzontale diverso dall'idrogeno si trova a destra e L se si trova a sinistra (per l'osservatore).

      Tutti gli zuccheri utilizzati dal nostro organismo, sia aldosi che chetosi, con rarissime eccezioni) presentano la configurazione stereochimica D di Fisher per l'ultimo carbonio asimmetrico il penultimo della catena carboniosa), mentre e' variabile la configurazione degli altri carboni asimmetrici.

      Il nome generico degli aldosi dipende dal numero di atomi di carbonio (espresso con la parola greca) della molecola: cosi' il ribosio e' un aldo-pentosio, il glucosio un aldo-esosio e cosi' via. Ogni aldosio presenta un numero di atomi di carbonio asimmetrico inferiore di due unita' al numero totale di atomi di carbonio (infatti sono simmetrici il primo e l'ultimo carbonio e asimmetrici quelli in mezz): quindi gli aldo-pentosi hanno tre carboni asimmetrici e gli aldo-esosi quattro. Di conseguenza sono possibili 8 (=23) aldo-pentosi diversi e 16 (=24) aldo-esosi; ma non tutti sono presenti negli organismi.

      Gli aldosi piu' comuni nel nostro organismo hanno 5 o 6 atomi di carbonio: ad es. il ribosio, il glucosio ed il galattosio:

Si noti il rapporto tra il glucosio ed il galattosio: entrambi hanno la formula bruta C6H12O6 e sono quindi isomeri tra loro; in particolare le due molecole differiscono esclusivamente per la configurazione stereochimica del quarto atomo di carbonio che e' asimmetrico e sono quindi isomeri ottici rispetto ad uno solo dei loro quattro centri chirali.

      L'applicazione della convenzione di Fisher a zuccheri con piu' di tre atomi di carbonio risulta controintuitiva perche' quella che sembra la stessa posizione e' D sui carboni pari ed L su quelli dispari (o viceversa), a causa della costruzione a zig-zag di una serie di carboni con ibridazione sp3. Ad esempio nel ribosio hanno configurazione D i carboni 2 e 4 e configurazione L il carbonio 3, anche se la formula di Fisher dispone tutti i gruppi OH sulla destra. Questo e' evidente se si prova a scrivere la formula indicando quali legami puntano verso l'osservatore e quali invece se ne allontanano (si ricordi che per la convenzione di Fisher dovrebbero allontanarsi i legami in alto e in basso e avvicinarsi quelli a destra e a sinistra; questo succede per il C2 e il C4 del ribosio ma non per il C3 che si trova in una configurazione "anti-Fisher"). Il C1 e l'ultimo C (C5 nel ribosio) non sono invece asimmetrici).

      FORME SEMIACETALICHE DEGLI ALDOSI. Gli aldosi con cinque o piu' atomi di carbonio possono assumere una configurazione ripiegata e chiudersi ad anello grazie alla formazione di un semiacetale interno alla molecola. Il risultato e' una molecola eterociclica non aromatica che assomiglia al tetraidrofurano nel caso degli aldo-pentosi e al tetraidropirano nel caso degli aldo-esosi (di qui i nomi di strutture furanosica e piranosica di questi zuccheri). In soluzione acquosa, quindi nelle condizioni dell'organismo, la struttura semiacetalica ciclica e' largamente preferita rispetto a quella aldeidica lineare. Poiche' le strutture cicliche degli zuccheri non sono aromatiche, esse non sono neppure planari; ad es. il gluco-piranosio (=glucosio in forma ciclica, piranosica) presenta l'isomeria a sedia e a barca come il cicloesano.

      Le forme semiacetaliche dei monosaccaridi possono essere scritte secondo la convenzione di Fisher (e allora assomigliano molto alle forme aldeidiche o chetoniche da cui derivano) o secondo la piu' realistica coinvenzione di Haworth (che le rappresenta come poligoni regolari). Quale che sia la convenzione che si decide di adottare si deve ricordare che questa e' soltanto un diverso modo per rappresentare la stessa realta' fisica e non c'e' nessuna differenza tra il glucopiranosio di Fisher e quello di Haworth.

      MUTAROTAZIONE. A seguito della formazione del semiacetale intra-molecolare, il C1 degli aldosi diventa asimmetrico e sono possibili due stereoisomeri ottici, chiamati α e β. Questi due stereoisomeri sono entrambi in equilibrio con la forma aldeidica, a catena aperta e pertanto si interconvertono nel fenomeno detto mutarotazione. La mutarotazione del glucopiranosio puo' essere cosi' rappresentata:


      I CHETOSI
      Gli zuccheri con la funzione chetonica sono chiamati chetosi. Qualunque sia il numero degli atomi di carbonio, la funzione chetonica si trova sul secondo carbonio della catena (posizione 2). Il piu' piccolo dei chetosi e' un cheto-triosio, il diidrossi acetone, unico zucchero che non presenta carboni asimmetrici e che quindi non ha isomeri ottici. Chetosi importanti sono il ribulosio (un cheto-pentosio) e il fruttosio (un cheto-esosio).

      FORME SEMICHETALICHE DEI CHETOSI. Come gli aldosi formano legami semiacetalici intra-molecolari, cosi' anche i chetosi con almeno 6 atomi di carbonio possono formare semichetali intra-molecolari che danno luogo a strutture cicliche di tipo furanosico o piranosico (come, ad esempio, il fruttofuranosio, riportato nella figura qui sopra).

      MONOSACCARIDI MODIFICATI
      Gli aldosi e i chetosi possono andare incontro a reazioni chimiche che ne modificano la formula. Alcuni di questi monosaccaridi modificati hanno grande importanza in biologia e in medicina. Le principali modificazioni chimiche cui gli zuccheri possono andare incontro sono le seguenti:
1) Riduzione di un gruppo alcolico: la riduzione di un gruppo alcolico da come prodotto un desossi-zucchero; il piu' importante esempio e' certamente quello del 2-desossi ribosio (lo zucchero del DNA), ma non e' l'unico: ad esempio e' un desossi-zucchero anche il fucosio (uno tra i pochissimi zuccheri presenti nel nostro organismo che presenta la forma L dell'ultimo carbonio chirale).
2) Riduzione del gruppo aldeidico o chetonico: produce un polialcol come l'inositolo, il sorbitolo o il ribitolo. Il caso piu' importante e' forse quello della riduzione del gruppo chetonico del diidrossi acetone, da cui si ottiene il glicerolo, l'alcol necessario alla biosintesi dei trigliceridi.
3) Ossidazione del gruppo aldeidico degli aldosi: produce l'acido aldonico. L'esempio piu' importante e' quello dell'acido gluconico, il prodotto di ossidazione del glucosio, con formula bruta C6H12O7. L'acido aldonico puo' formare un estere intramolecolare ciclico, chiamato un lattone, mediante la reazione del gruppo carbossilico in posizione 1 con l'OH del quinto carbonio. Nel caso dell'acido gluconico, il prodotto di questa reazione e' il glucono-lattone con formula bruta C6H10O6.
4) Ossidazione dell'ultimo atomo di carbonio degli aldosi o dei chetosi: produce l'acido alduronico o cheturonico. Il piu' importante e' l'acido glicuronico (o glucuronico), un altro prodotto di ossidazione del glucosio. E' importante notare che dal punto di vista della chimica organica, qualunque ossidante ossiderebbe prima il gruppo aldeidico degli aldosi; l'acido alduronico e' prodotto senza ossidare il gruppo aldeidico grazie alla presenza di enzimi specifici.
5) Ossidazione del primo e dell'ultimo atomo di carbonio degli aldosi: produce l'acido saccarico, che presenta due gruppi carbossilici.
7) Sostituzione di un gruppo alcolico con un gruppo aminico: si ottengono gli aminozuccheri come la 2-glucosamina e la 2-galattosamina. Spesso il gruppo aminico degli aminozuccheri nella cellula viene combinato con acido acetico e il prodotto e' un N-acetil aminozucchero (ad es. la N-acetil glucosamina).
      Alcune formule di zuccheri modificati sono riportate nella figura seguente:


      POLISACCARIDI
      Gli zuccheri ad alto peso molecolare si chiamano polisaccaridi e sono plimeri dei monosaccaridi.
      POLIMERI BIOLOGICI. Le macromolecole biologiche possono contenere molte migliaia di atomi, ma non sono sintetizzate atomo per atomo; sono invece polimeri, cioe' sono composte di molecole piu' piccole, sintetizzate atomo per atomo (i monomeri) e poi legate insieme. Sono caratteristici del polimero il tipo dei monomeri che lo costituiscono ed il legame che unisce i monomeri. I monomeri possono essere tutti uguali tra loro (ed allora il polimero prende il nome di omopolimero) oppure soltanto simili (negli eteropolimeri). Nel caso degli eteropolimeri i monomeri devono essere chimicamente simili abbastanza da poter formare il legame caratteristico del polimero e possono invece differire per parti della molecola non coinvolte in questo legame. Un esempio di omopolimero e' l'amido, costituito da molecole di glucosio tutte uguali tra loro e legate con legame glicosidico; esempi di eteropolimeri sono le proteine e gli acidi nucleici, costituiti rispettivamente da aminoacidi e da nucleotidi (le proteine sono polimeri di 20 diversi aminoacidi e gli acidi nucleici di 4 diversi nucleotidi)
      LEGAME GLICOSIDICO. Il legame caratteristico dei polimeri degli zuccheri e' una forma particolare di acetale o chetale, che si forma tra il carbonio semiacetalico (o semichetalico) di un monosaccaride ed un carbonio qualunque di un altro monosaccaride. Ad esempio due molecole di glucopiranosio possono legarsi insieme formando un disaccaride chiamato maltosio, nel quale c'e' un legame glicosidico tra il gruppo semiacetalico sul C1 della prima molecola (in configurazione α) ed l'ossidrile sul C4 della seconda molecola; il legame si chiama α 1-4 glicosidico:

      Mentre il semiacetale e' in equilibrio con l'aldeide (cioe' il glucopiranosio e' in equilibrio con la forma lineare del glucosio), l'acetale non puo' piu' tornare in equilibrio con la forma lineare: il legame glicosidico impedisce la mutarotazione e fissa lo zucchero nella configurazione (α o β) che aveva al momento in cui il legame si e' formato.

      POLIMERIZZAZIONE TESTA-CODA. Nei polimeri biologici (ed in molti polimeri sintetici), i monomeri hanno una polarita' e si legano tra loro con un legame di tipo testa-coda; di conseguenza il polimero risultante mantiene la stessa polarita' dei suoi monomeri. Questo e' evidente, ad esempio, nel legame glicosidico del maltosio: ogni monomero di glucosio ha un C1 e un C4 ed il legame e' costituito in modo tale che il C1 si lega con il C4 del monomero successivo; pertanto il polimero ha la struttura C1-X-C4 - C1-X-C4 e mantiene quindi la polarita' del monomero, avendo ad una estremita' il C1 (del primo monomero) e all'altra estremita' il C4 (dell'ultimo monomero)

      I QUATTRO DISACCARIDI IMPORTANTI PER L'ALIMENTAZIONE DELL'UOMO. Il cibo ingerito non puo' essere assorbito come tale, ma deve essere digerito. In termini biochimici digestione e' sinonimo di depolimerizzazione, cioe' di scomposizione dei polimeri contenuti negli alimenti in monomeri, e l'assorbimento e' possibile soltanto per i monomeri, non per i polimeri. Il sistema digerente possiede enzimi preposti alla digestione (=depolimerizzazione) ed in particolare possiede quattro disaccaridasi, cioe' quattro enzimi capaci di depolimerizzare i disaccaridi (polimeri costituiti da due soli monomeri). Consegue che soltanto quattro disaccaridi possono essere digeriti dal nostro intestino, mentre gli altri disaccardidi contenuti negli alimenti finiscono nelle feci. Le quattro disaccaridasi si chiamano maltasi, isomaltasi, saccarasi e lattasi e digeriscono rispettivamente il maltosio, l'isomaltosio, il saccarosio ed il lattosio. La carenza genetica o legata a difetti di sviluppo di una disaccaridasi comporta intolleranza per il disaccaride corrispondente e per tutti i polisaccaridi che lo producono nel corso della digestione. Le formule dei quattro disaccaridi importanti per l'alimentazione sono le seguenti:

      Un esempio di disaccaride che l'uomo non e' in grado di digerire e che quindi dal punto di vista alimentare e' fibra (cioe' materiale inerte, che finisce nelle feci) e' il cellobioso, unita' strutturale della cellulosa. Il cellobioso ci illustra l'importanza dell'isomeria ottica nella biologia: infatti e' un dimero di glucosio e sarebbe identico al maltosio se non fosse per il legame β 1-4 glicosidico (anziche' α 1-4); inoltre e' identico al lattosio (galattosio β 1-4 glucosio), salvo per la configurazione stereochimica del C4 del primo monomero. E' soltanto l'estrema selettivita' degli enzimi che rende cosi' diversi il lattosio dal cellobioso nel nostro organismo.


      OMOPOLISACCARIDI. I polisaccaridi possono essere costituiti da monomeri identici tra loro (in genere glucosio); si chiamano allora omopolisaccaridi ed hanno la funzione di sostegno strutturale (la cellulosa delle piante, polimero lineare di glucosio con legami β 1-4 glicosidici) o di riserva energetica (l'amido delle piante ed il glicogeno degli animali, polimeri ramificati di glucosio con legami α 1-4 e α 1-6 glicosidici; l'amido comprende molte migliaia di molecole di glucosio, il glicogeno molti milioni):


      MUCOPOLISACCARIDI. I mucopolisaccaridi sono omopolimeri di disaccaridi; di conseguenza nella loro struttura due monosaccaridi si alternano in modo regolare. Molto spesso i monosaccaridi che costituiscono i mucopolisaccaridi sono monosaccaridi modificati, che non hanno la formula canonica CnH2nOn. Assolvono importanti funzioni strutturali nella matrice inorganica dei vari tipi di tessuto connettivo. Un esempio importante e' dato dall'acido ialuronico, il polimero di un disaccaride costituito da N-acetil glucosamina e acido glucuronico:


      ETEROPOLISACCARIDI. Gli eteropolisaccaridi sono piccoli polisaccaridi nei quali i monomeri si susseguono con sequenza libera. La biosintesi e' complessa (e' necessario un enzima diverso per ogni singolo monomero) ed hanno spesso funzioni di rivestimento cellulare e di riconoscimento. Ne e' un esempio il polisaccaride dei gruppi sanguigni AB0, composto da una struttura polisaccaridica di base (la sostanza H) sulla quale possono poi essere attaccati altri monosaccaridi. L'antigene AB0 e' presente sulla membrana cellulare, ed in particolare sulla membrana dei globuli rossi, ed e' responsabile delle reazioni di incompatibilita' alla trasfusione del sangue.
 
   
 
 
 
 
I LIPIDI

      I lipidi (chiamati anche grassi) sono composti di origine biologica, eterogenei dal punto di vista chimico, che condividono la caratteristica di essere scarsamente solubili in acqua. Di conseguenza, posti in soluzione acquosa, tendono a separarsi e formare una fase propria come accade ad esempio se si mescolano acqua e olio.
      I lipidi possono essere raggruppati in classi chimicamente piu' omogenee:
1) Cere (esteri di acidi carbossilici a lunga catena idrocarburica con alcoli a lunga catena idrocarburica; spesso l'acido e l'alcol hanno lo stesso numero di acidi di carbonio)
2) Gliceridi e fosfogliceridi (esteri del glicerolo)
3) Colesterolo e suoi derivati
4) Derivati della sfingosina, che includono anche i glicosidi e i cerebrosidi ("glicolipidi").

GLI ACIDI GRASSI

      Gli acidi grassi sono acidi carbossilici di alcani, alcheni o polieni con 10-20 atomi di carbonio. In genere il numero totale degli atomi di carbonio e' pari perche' la biosintesi di questi composti e' effettuata unendo tra loro molecole a due atomi di carbonio. Esempi di acidi grassi sono:


      Gli acidi grassi si comportano in acqua come acidi deboli poco solubili, e dissociano reversibilmente come dall'esempio seguente, con valori di Ka prossimi a 10-5 M:
CH3-(CH2)7-CH=CH-(CH2)7-COOH + H2O <==> CH3-(CH2)7-CH=CH-(CH2)7-COO- + H3O+
      I sali degli acidi grassi (in genere ottenuti mediante titolazione con basi forti o idrolisi basica dei trigliceridi) sono chiamati saponi. Ad esempio la formula del sapone palmitato di sodio e': CH3-(CH2)14-COONa.
      Essendo elettroliti forti (come qualunque altro sale) i saponi in acqua sono dissociati negli ioni costituenti (e danno una modesta idrolisi basica). Una caratteristica dei saponi e' la capacita' di formare in acqua degli aggregati sferici chiamati micelle, nei quali la parte idrofobica della molecola e' sequestrata all'interno della sferula mentre verso l'esterno viene rivolto il gruppo carbossilico ionizzato, polare e capace di interagire con l'acqua.


I GLICERIDI

      I gliceridi sono esteri del glicerolo (propantriolo; e' il prodotto di riduzione del diidrossiacetone) con acidi grassi. Se una molecola di glicerolo forma un legame estere con un solo acido grasso il prodotto si chiama monogliceride; se forma due legami estere con due acidi grassi si ha un digliceride; ed infine se forma tre legami estere con tre acidi grassi si ha un trigliceride:

      I trigliceridi sono molto comuni nel nostro organismo (la gran parte delle nostre riserve energetiche, contenute nel tessuto adiposo e' costituita da trigliceridi) e negli alimenti (sono prevalentemente costituiti da trigliceridi l'olio, il burro e i grassi animali). I digliceridi e i monogliceridi sono intermedi nella biosintesi e nella degradazione (digestione) dei trigliceridi, ma non sono molto rappresentati nel nostro organismo.
      Quando gli acidi grassi dei trigliceridi sono saturi, le molecole si impaccano strettamente tra loro e la sostanza e' solida a temperatura ambiente (ad es. il burro); quando invece una parte consistente degli acidi grassi e' costituita da molecole insature o poliinsature, la sostanza e' liquida a temperatura ambiente (ad es. olio).


I FOSFOGLICERIDI

      I fosfogliceridi sono derivati dell'acido fosfatidico un derivato del glicerolo nel quale i primi due gruppi ossidrilici dell'alcol sono esterificati con due acidi grassi, e il terzo con acido fosforico. I fosfogliceridi presentano un secondo alcol a sua volta esterificato con il residuo fosforico dell'acido fosfatidico; ne e' un esempio la fosfatidil-etanolamina:

      L'idrolisi dei fosfogliceridi restituisce quattro componenti: glicerolo, acidi grassi, acido fosforico e il "quarto componente" (che sopra e' stato chiamato secondo alcol). I principali quarti componenti dei fosfogliceridi biologici sono tre aminoalcoli (2-etanolamina, serina e colina) e l'inositolo.

      MEMBRANE LIPIDICHE
      Le cellule sono rivestite da membrane costituite da un doppio strato di fosfolipidi, nel quale sono immerse proteine. Il principale tipo di fosfolipidi delle membrane biologiche e' rappresentato dai fosfogliceridi, contenenti sia acidi grassi saturi che insaturi, e tutti i tipi di quarti componenti. Il motivo per il quale i fosfolipidi formano le membrane a doppio strato e' connesso con il fatto che essi presentano una "testa" polare che interagisce con l'acqua (il gruppo fosfato - quarto componente) e due "code" apolari (le catene idrocarburiche degli acidi grassi) che invece interagiscono tra loro:



IL COLESTEROLO E I SUOI DERIVATI

      Il colesterolo ed i suoi derivati sono globalmente chiamati steroidi; tutti condividono una struttura comune. Nel nostro organismo il colesterolo e' sintetizzato per primo e ciascuno dei suoi derivati e' sintetizzato a partire da lui. Il colesterolo e' un alcol policiclico non aromatico la cui struttura deriva da una molecola, non presente nell'organismo, chiamata ciclopentano-peridrofenantrene:

      Il colesterolo, oltre ad essere il precursore di tutti gli steroidi, e' presente come tale o nella forma dei suoi esteri nelle membrane cellulari insieme ai fosfolipidi, e' conservato nel tessuto adiposo ed e' trasportato agli altri tessuti dalle lipoproteine del sangue.
      I principali derivati del colesterolo appartengono a due classi molto diverse tra loro per struttura e funzioni:
1) Gli ormoni steroidei, a loro volta classificati come glicocorticoidi (cortisolo, cortisone, etc.); mineralcorticoidi (aldosterone); e ormoni sessuali (maschili: testosterone, androstenedione, etc.; femminili: estrogeni, progesterone). Tutti gli ormoni steroidei sono prodotti dalla corticale del surrene, ma nel caso degli steroidi sessuali la sede principale di produzione e' rappresentata dalle gonadi (ovaio e testicolo).
2) I sali o acidi biliari, prodotti dal fegato (ad es. l'acido colico), che hanno la funzione di emulsionare e rendere digeribili i lipidi introdotti con l'alimentazione.


LA SFINGOSINA E I SUOI DERIVATI

      La sfingosina e' un aminoalcol a 18 atomi di carbonio. Il prodotto della reazione tra la sfingosina e un acido grasso e' chiamato ceramide (il nome deriva dal legame carboamidico che unisce i due composti). La ceramide assomiglia per struttura ad un digliceride. Ne' la sfingosina ne' la ceramide si trovano da soli nel nostro organismo; pero' la ceramide (come i digliceridi) puo' coniugarsi con un acido fosforico e quest'ultimo con un quarto componente; il prodotto finale e' un fosfolipide diverso dai fosfogliceridi, chiamato sfingomielina. Le formule ed i confronti tra le strutture nominate sono cosi' rappresentati:

      La sfingomielina partecipa alla costituzione delle membrane cellulari comportandosi esattamente come un fosfogliceride, ed e' un componente importante di alcune membrane molto particolari come quelle dei neuroni e della glia (guaine mieliniche).
      Un altro tipo di derivati della ceramide ha importanza in biologia e medicina: i glicosfingolipidi (gangliosidi e cerebrosidi). In questi lipidi molto particolari, che partecipano anch'essi alla costituzione delle membrane dei neuroni e della glia, il gruppo semiacetalico di uno zucchero (o quello terminale di un piccolo polisaccaride) forma un legame di tipo acetalico (glicosidico) con il gruppo alcolico libero della ceramide:
 
   
 
 
 
 
AMINOACIDI E PROTEINE

      Gli aminoacidi presentano un gruppo carbossilico, un gruppo aminico e un residuo legati ad un carbonio centrale, asimmetrico, chiamato Cα. Sono composti molto importanti, che svolgono varie funzioni nell'organismo, la principale delle quali e' l'essere i monomeri delle proteine, eteropolimeri lineari orientati molto importanti in biologia. Gli aminoacidi che costituiscono le proteine (aminoacidi "proteici") sono tutti stereoisomeri L sul Cα e sono 20, differenti per il residuo R.

      I residui R dei 20 aminoacidi proteici sono:
1) alifatici:
glicina (Gly, G): R = H
alanina (Ala, A): R = CH3
valina (Val, V): R = CH(CH3)2
leucina (Leu, L): R = CH2-CH(CH3)2
isoleucina (Ile, I): R = CH(CH3)-CH2-CH3

2) polari:
serina (Ser, S): CH2OH
cisteina (Cys, C): CH2SH
treonina (Thr, T): CHOH-CH3
metionina (Met, M): CH2-CH2-S-CH3

3) la prolina e' l'unico iminoacido e viene riportato per intero anziche' col solo residuo R (vedi figura)

4) aromatici:
fenilalanina (Phe, F; vedi figura)
tirosina (Tyr, Y; vedi figura)
triptofano (Trp, W; vedi figura)


5) basici:
istidina (His, H; vedi figura)
lisina (Lys, K): (CH2)4 - NH2
arginina (Arg, R; vedi figura)

6) acidi (dicarbossilici):
acido aspartico (Asp, D): CH2-COOH
acido glutamico (Glu, E): CH2-CH2-COOH

7) amidici:
asparagina (Asn, N): CH2-CONH2
glutamina (Gln, Q): CH2-CH2-CONH2

      TITOLAZIONE DEGLI AMINOACIDI. Il gruppo α-aminico di ogni aminoacido si titola come una base debole ed il gruppo α-carbossilico come un acido debole; possono inoltre essere presenti eventuali altri gruppi titolabili nel residuo R (aminacidi basici e acidi; tirosina). Per effettuare la titolazione occorre partire da una specie completamente acidificata, come ad esempio il sale cloruro della forma aminica protonata: Cl- NH3+-CαHR-COOH e aggiungere piccole aliquote di base a concentrazione nota:


      REAZIONI DEGLI AMINOACIDI.
1) Transaminazione con un α-chetoacido (scambio dei gruppi aminico e chetonico). E' la reazione catalizzata dagli enzimi chiamati transaminasi, normalmente contenuti all'interno delle cellule (specialmente del fegato; in corso di malattie di quest'organo la morte delle cellule rilascia le transaminasi nel sangue, dove vengono dosate). Ad esempio la Glutamico-Piruvico Transaminasi (GPT, ALT) catalizza la seguente reazione reversibile:

2) Decarbossilazione: restituisce anidride carbonica e l'amina corrispondente all'aminoacido; e' catalizzata dalle decarbossilasi. Alcune delle amine ottenute in questa reazione hanno attivita' di mediatori o ormoni. Ad esempio:


      AMINOACIDI NON PROTEICI. Alcuni amnoacidi non presenti nelle proteine hanno grande rilievo in biologia e in medicina. Ad esempio la D-alanina e' un componente del peptidoglicano che costituisce il rivestimento di molti batteri, mentre la L-ornigtina e' un intermedio metabolico della biosintesi dell'urea.

IL LEGAME PEPTIDICO

      I polimeri degli aminoacidi si formano grazie al legame peptidico, un caso particolare del legame carboamidico (cosi' chiamato perche' simile al gruppo amidico):

      Il legame peptidico si instaura tra il carbonio del gruppo α carbossilico del primo aminoacido e l'azoto del gruppo α aminico del secondo aminoacido, con eliminazione di una molecola d'acqua. Per capire bene la struttura e le proprieta' di questo legame importantissimo in biologia, occorre fare le seguenti osservazioni:
1) il carbonio e l'azoto coinvolti nel legame peptidico presentano entrambi l'ibridazione sp2 e la geometria trigonale planare.
2) Come conseguenza del precedente punto 1, il carbonio, l'azoto, gli atomi legati al carbonio (Cα e O) e quelli legati all'azoto (Cα e H) giacciono tutti sullo stesso piano.
3) C'e' delocalizzazione del doppio legame tra l'ossigeno, il carbonio e l'azoto; questo conferisce al legame peptidico un parziale carattere di doppio legame (come del resto avviene nelle amidi):

4) A causa della parziale natura di doppio legame del legame peptidico, non e' ammessa la rotazione del CO e dell'NH ed il legame peptidico presenta gli isomeri geometrici cis e trans (quest'ultimo e' preferito per il minore ingombro sterico che deriva dall'allontanare tra loro il Cα legato al CO e il Cα legato all'NH).
5) E' permessa la rotazione del Cα rispetto al CO e del Cα rispetto all'NH, con gli angoli di legame denominati rispettivamente psi e fi.

      POLIPEPTIDI E PROTEINE. I polipeptidi sono i polimeri degli aminoacidi. Sono eteropolimeri, perche' la sequenza dei residui e' libera; sono lineari (non ramificati) ed orientati, perche' hanno una estremita' con il gruppo aminico libero ed una con il gruppo carbossilico libero:

      Le proteine sono polipeptidi di grandi dimensioni (da 100 ad oltre 1000 residui aminoacidici) con peso molecolare superiore a 10.000 UMA. La loro sequenza aminoacidica e' determinata dai geni contenuti nel DNA della cellula.

      STRUTTURA DELLE PROTEINE. Le proteine presentano una struttura complessa, descritta secondo quattro livelli di organizzazione ordinati gerarchicamente:
1) la struttura primaria e' data dalla sequenza degli aminoacidi, a partire dall'estremita' amino-terminale della catena polipeptidica. E' sostanzialmente un elenco di aminoacidi come ad es. NH2-Val-...-Arg-COOH.
2) La struttura secondaria e' dovuta al ripiegamento su se stessa della catena polipeptidica causato dallo stabilirsi di legami idrogeno tra i gruppi NH e CO dei legami peptidici. Puo' essere periodica, nelle forme a spirale (detta α-elica) e del foglietto β (fatto di segmenti lineari contrapposti), oppure non periodica (ripiegamento casuale).

L'α-elica e' una spirale che presenta circa 3,4 residui aminoacidici per giro; il foglietto β si forma se tratti diversi della catena polipeptidica si dispongono gli uni di fronte agli altri in senso parallelo o antiparallelo (come in figura). In entrambi i casi, le strutture periodiche richiedono angoli di rotazione fi e psi costanti per i tratti della catena polipeptidica interessati. Le strutture periodiche sono entro certi limiti indipendenti dalla sequenza aminacidica perche' tutti gli aminoacidi possiedono i gruppi CO e NH necessari per formarle. Esistono pero' eccezioni perche' alcuni aminoacidi o sequenze di aminoacidi non formano i legami fi e psi necessari (ad es. la prolina interrompe le α-eliche).
3) la struttura terziaria e' data dal ripiegarsi su se stessi di segmenti a struttura secondaria periodica e da alla macromolecola la sua forma che puo' essere fibrosa (allungata) o globulare (approssimativamente sferica). I legami chimici che mantengono le strutture terziari sono a carico del residuo R degli aminoacidi e pertanto le strutture terziarie, al contrario delle secondarie sono fortemente dipendenti dalle sequenze aminoacidiche; essi sono: (a) interazioni di Van der Waals tra i residui aminoacidici apolari che si separano spontaneamente dal solvente acquoso rifugiandosi all'interno della macromolecola; (b) i legami idrogeno e i legami ionici tra residui aminoadicici distanti; (c) legami disolfuro tra residui di cisteina:

4) la struttura quaternaria e' data dall'eventuale aggregazione di piu' catene polipeptidiche. Alcune proteine sono costituite da una sola catena polipeptidica (ad es. l'albumina del sangue), altre da piu' di una legate insieme dagli stessi legami responsabili del mantenimento della struttura terziaria (ad es. le immunoglobuline).

      DENATURAZIONE DELLE PROTEINE. Si chiama nativa la struttura secondaria e terziaria (e quaternaria se c'e') normalmente presente nelle condizioni fisiologiche e capace delle funzioni biologiche caratteristiche della proteina in questione. Nella gran parte dei casi, le proteine vengono preparate dai tessuti biologici nella loro struttura nativa. Tutte le proteine, pero', possono essere poste in condizioni sperimentali nelle quali la struttura terziaria, e in alcuni casi anche secondaria, vengono perdute. Questo processo si chiama denaturazione. In molte proteine la denaturazione e' un processo reversibile e se la proteina denaturata viene posta in condizioni sperimentali adeguate essa spontaneamente riacquista la sua struttura nativa (rinaturazione). Gli esperimenti di denaturazione-rinaturazione dimostrano che la struttura secondaria e terziaria delle proteine sono interamente determinate dalla struttura primaria e suggeriscono che la configurazione nativa corrisponda ad un minimo termodinamico dell'energia delle interazioni degli aminoacidi tra loro e col solvente.
      Le procedure comunemente impiegate per denaturare le proteine sono: il riscaldamento, la variazione del pH, l'uso di solventi organici o l'aggiunta di soluti perturbatori della struttura dell'acqua (urea, guanidina). In genere la differenza energetica tra la configurazione nativa e le configurazioni denaturate (che sono tra loro isomeri conformazionali e geometrici) e' piccola e corrisponde a poche kcal/mole
 
   
 
 
 
 
NUCLEOTIDI E ACIDI NUCLEICI

      Gli acidi nucleici (desossiribonucleico, DNA e ribonucleico, RNA), che conservano e trasmettono l'informazione genetica, sono eteropolimeri lineari orientati di nucleotidi.

      NUCLEOTIDI. I nucleotidi sono molecole complesse costituite da uno zucchero (il ribosio oppure il 2-desossiribosio), una base azotata deivata dalla purina oppure dalla pirimidina, e una molecola di acido fosforico:

      RIBOSIO E DESOSSIRIBOSIO. Il ribosio e' un aldopentoso che in soluzione forma una struttura ciclica semiacetalica a cinque atomi di tipo furanosico; il 2-desossiribosio e' un derivato del ribosio.

      LE BASI AZOTATE. Le basi azotate del DNA e dello RNA sono eterociclici a carattere aromatico, e dal punto di vista chimico si possono considerare derivati della purina o della pirimidina (si vedano le formule di questi composti nella lezione sulla chimica organica). E' importante sottolineare che dal punto di vista biochimico, la biosintesi delle basi azotate non passa attraverso la purina e la pirimidina; la classificazione chimica non ha quindi rapporto con l'origine biologica di questi composti.
      Nel DNA si trovano quattro basi azotate: due purine (adenina, A, e guanina, G) e due pirimidine (timina, T, e citosina, C). Nello RNA si trovano quattro basi azotate delle quali tre sono identiche a quelle del DNA (adenina, guanina e citosina) mentre la quarta e' leggermente diversa (uracile, U, al posto della timina; la differenza tra queste due e' la sostituzione di un idrogeno dell'uracile con un gruppo metilico nella timina che risulta quindi essere metil-uracile).


      STRUTTURA DEI NUCLEOTIDI. Le tre molecole che costituiscono il nucleotide si legano tra loro in questo modo: l'acido fosforico forma un legame di tipo estere con l'ossidrile in posizione 5 del ribosio o del desossiribosio; la base azotata forma un legame di tipo N-glicosidico con il carbonio semiacetalico dello zucchero:

      Come si vede in figura, la differenza tra il ribonucleotide (a sinistra) e il desossiribonucleotide (a destra) e' limitata alla presenza o assenza dell'ossidrile in posizione 2 sullo zucchero, che non partecipa al legame con l'acido fosforico ne' con la base azotata.
      Per non confondere nella descrizione della molecola gli atomi di carbonio della base azotata con quelli dello zucchero si adotta la seguente convenzione: con la notazione C1,C2, etc. ci si riferisce alla base azotata mentre con C1',C2', etc. ci si riferisce allo zucchero. E' quindi corretto dire che l'acido fosforico si lega alla posizione C5' dello zucchero e la base alla C1' (leggi C5 primo, C1 primo).

      LEGAME FOSFODIESTERE. Il polimero dei nucleotidi si forma mediante lo stabilirsi di un legame fosfodiestere tra l'acido fosforico legato ad un nucleotide e l'ossidrile in posizione C3' del nucleotide successivo (e di nuovo non viene utilizzata la posizione C2': questo significa che il legame e' analogo nel DNA e nello RNA):

      Il polimero di nucleotidi (spesso chiamato un "filamento") presenta le seguenti caratteristiche:
1) ha uno scheletro lineare formato dalla sequenza ribosio-fosfato-ribosio, che non ammette ramificazioni;
2) e' orientato (ha una estremita' col C5' libero ed una col C3' libero);
3) e' un eteropolimero (le basi azotate non parecipano allo scheletro e la loro sequenza e' libera).

      ACCOPPIAMENTO DELLE BASI AZOTATE. Le basi azotate possono accoppiarsi tra loro mediante legami idrogeno in due sole coppie: A con T (e la sua inversa, T con A; nello RNA A con U e U con A) e G con C (e la sua inversa, C con G). La limitazione degli accoppiamenti possibili e' dovuta ai seguenti fattori:
1) quando i polimeri si appaiano per lunghi tratti le coppie devono essere purina-pirimidina: la coppia purina-purina e' troppo grande, la coppia pirimidina-pirimidina troppo piccola rispetto alla siatnza tra i due polimeri appaiati.
2) La coppia AT forma due legami idrogeno e la coppia GC ne forma tre.
3) La polarita' dei legami idrogeno in posizione corrispondente nelle due coppie e' inversa. Questo si osserva molto bene in figura: ad esempio T presenta un gruppo accettore dell'idrogeno, cioe' un CO, in corrispondenza di un gruppo donatore su A, cioe' NH2; l'altra purina (G) non potrebbe formare questo legame perche' nella posizione corrispondente G presenta un gruppo accettore di idrogeno (CO). Ragionamenti analoghi si possono fare per tutti gli altri legami idrogeno.

4) la coppia AU nello RNA e' sostanzialmente analoga alla coppia AT nel DNA perche' la sola differeza tra U e T (assenza o presenza di un gruppo metilico) occorre in una posizione che non interferisce con i legami idrogeno responsabili dell'appaiamento.

      STRUTTURA E REPLICAZIONE DEL DNA. Il DNA si trova nei cromosomi delle cellule eucariote o nel citoplasma delle cellule procariote ed ha la struttura di due polimeri tra loro appaiati per via dei legami idrogeno tra le rispettive basi azotate. I due polimeri o filamenti sono allineati in senso antiparallelo (cioe' la polarita' C3'-C5' del secondo e' inversa a quella del primo). Questa disposizione consente a ciascuno dei due filamenti di potersi comportare come un "stampo per la biosintesi dell'altro: cioe' la sequenza nucleotidica di ciascuno e' anequivocamente indicata da quella, complementare e antiparallela, dell'altro:

      La duplicazione del DNA richiede la separazione dei due filamenti e la polimerizzazione di nucleotidi trifosfati, con formazione del legame fosfodiestere ed eliminazione di una molecola di acido pirofosforico (H4P2O7) per ogni legame formato. La reazione e' catalizzata dall'enziam DNA polimerasi, che aggiunge all'estremita' C3' della catena polinucleotidica neoformata un nucleotide C5' trifosfato; pertanto la biosintesi del DNA procede nella direzione C3' -> C5'. La DNA polimerasi non sa in quale sequenza devono essere disposti i nucleotidi: prende questa informazione da uno dei due filamenti, utilizzato come "stampo", e ne sintetizza uno complementare e antiparallelo. La DNA polimerasi umana e' un enzima molto preciso, che commette meno di un errore per ogni milione di nucleotidi aggiunti. L'errore della DNA polimerasi costituisce una mutazione.
      Esiste inoltre un altro enzima, la RNA polimerasi, che forma catene polinucleotidiche di RNA utilizzando come stampo un filamento di DNA. Questo processo si chiama trascrizione e consente di esportare l'informazione genetica al di fuori del nucleo per la sintesi proteica.
      Perche' gli acidi nucleici sono le molecole prescelte dalla selezione naturale per mantenere e trasmettere l'informazione genetica? Gli acidi nucleici possiedono duee proprieta' molto peculiari e adatte per questi scopi:
1) sono eteropolimeri lineari a sequenza libera. Un omopolimero non potrebbe portare nessuna informazione.
2) L'accoppiamento delle basi azotate e' fondamentale per la duplicazione del DNA e quindi per la replicazione cellulare; e' molto importante quindi che gli accoppiamenti esistano e che siano molto rigorosi (e' un vantaggio che le coppie siano soltanto due perche' questo riduce il rischio di errori della DNA polimerasi).

      TAUTOMERIA CHETO-ENOLICA DELLE BASI AZOTATE. Alcune delle basi azotate dello RNA o del DNA possono andare incontro a fenomeni di tautomeria cheto-enolica e presentarsi quindi, occasionalmente, nella meno comune forma enolica. Questo fenomeno, che e' una reazione chimica e avviene per ciascuna molecola indipendendemente da ogni altra, e' particolarmente rilevante nel caso del DNA perche' se interviene nel corso della sua replicazione puo' alterare gli accoppiamenti delle basi ed essere causa di mutazione. Il caso piu' evidente e' quello della timina, il cui tautomero chetonico si accoppia con l'adenina, mentre quello enolico si accoppia con la guanina:


Domande (la risposta e' obbligatoria se e' stata attivata la registrazione elettronica della presenza)
1) I monosaccaridi sono:
poliidrossialdeidi o poliidrossichetoni
acidi carbossilici con una lunga catena carboniosa
molecole che possiedono il gruppo carbossilico e il gruppo aminico

2) Una proteina e' un eteropolimero di aminoacidi legati tra loro con legame:
acetalico
estere
peptidico

3) Le sfingomieline sono composte da:
sfingosina, acido grasso, acido fosforico, quarto componente
ceramide, acido fosforico
sfingosina, acido fosforico, quarto componente

4) L'acido gluconico deriva dal glucosio per ossidazione del
C6
C1
C6 e C1

Il tuo punteggio: 0
La tua presenza non e' stata registrata perche' il sistema non e' attivo o non hai inserito il numero di matricola.

Puoi inserire le tue domande o commenti nello spazio qui sotto (lunghezza massima = 160 caratteri):



Buonasera Professore ho 2 domande:
1 Nel funzionamento della PET lei ci ha detto che il radiofarmaco utilizzato il glucosio marcato
con l'isotopo 19 del Fluoro mentre su questo sito c'e' scritto che l'isotopo utilizzato il Fluoro 18.
2 Come mai la cinetica radioattiva ha andamento discontinuo??
1 Ha ragione il sito, mi devo essere sbagliato, l'emettitore beta meno e' 18F.
2 La cinetica radioattiva e' una funzione probabilistica: ogni atomo ha una certa probabilita' di
trasformarsi nell'unita' di tempo. Se la quantita' degli atomi e' sufficientemente piccola e'
possibile seguire i singoli eventi di decadimento. Tra un evento e l'altro non accade nulla.
L'esponenziale e' l'integrale di questa funzione probabilistica.


Non ho capito bene l'ibridazione
L'ibridazione e' il fenomeno per cui due orbitali atomici che hanno una
parziale sovrapposizione possono cambiare forma e produrre due orbitali ibridi con minore
sovrapposizione. Consegue all'interazione tra le funzioni d'onda degli elettroni.


Scusi professore la differenza di intensita' del campo elettromagnetico per
ogni nucleo e' dovuta al diverso numero di particelle oppure ad altro?
Ogni nucleo genera attorno a se un campo elettrostatico la cui intensita' 
dipende dalla sua carica, cioe' dal numero di protoni.


Ho una domanda non ho capito esattamente qual e' la differenza tra nuclear spin
e nuclear momento? E' diverso da zero solo quando il numero di protoni e neutroni e' ...?
C'e' una buona spiegazione della risonanza magnetica nucleare su
questo sito.
In pratica ogni particella nucleare ha il suo spin (rotazione sul suo asse) e lo spin vale
+1/2 o -1/2
1) Se i protoni e i neutroni sono entrambi pari, allora il nucleo ha spin zero.
2) Se i protoni e i neutroni sono gli uni pari e gli altri dispari, allora il nucleo ha spin
semi-intero (1/2, 3/2, 5/2, ...).
3) Se i protoni e i neutroni sono entrambi dispari, allora il nucleo ha spin intero (1, 2, 3, ...)
Tutti i nuclei con spin diverso da zero sono osservabili all'NMR, ciascuno e' eccitabile con
la sua frequenza caratteristica.
Il momento magnetico e' il vettore campo magnetico generato dallo spin.

Non ho capito bene l'orbitale anti-sigma
La sovrapposizione di due orbitali atomici forma due orbitali di legame:
uno con la massima densita' elettronica nella zona di massima sovrapposizione tra i due
orbitali atomici (orbitale di legame sigma) e uno con la massima densita' elettronica nelle
regioni nelle quali non vi e' sovrapposizione (orbitale anti-sigma). Perche' il legame sia stabile
e' necessario che l'orbitale sigma, a minima energia, sia popolato da due elettroni e l'orbitale
anti-sigma non sia popolato da elettroni. Aggiungero' una figura per illustrare questo
concetto nel testo della lezione sul sito.

Non ho capito la differenza tra uno ione e un (atomo) radicale
Uno ione e' un atomo (o una molecola nel caso degli ioni poliatomici) che
ha perduto o acquistato uno o piu' elettroni. Uno ione monoatomico e' stabile se acquisisce
la configurazione elettronica del gas nobile piu' vicino nella tavola periodica. Ad esempio lo
ione sodio ha la configurazione elettronica perde un elettrone per raggiungere la stessa
configurazione elettronica del gas nobile che precede il sodio (il neon), mentre il fluoro
ottiene lo stesso risultato acquistando un elettrone e trasformandosi nello ione fluoruro.
Na+, Ne e F- hanno la stessa configurazione elettronica:
1s2 2s2 2p6.
Un radicale e' un atomo o una molecola che possiede uno o piu' elettroni spaiati. Ad esempio
l'atomo di sodio ha la configurazione elettronica 1s2 2s2 2p6 3s1
ed e' quindi un radicale se considerato in forma isolata; quando perde un elettrone e si
trasforma nello ione sodio, ha tutti elettroni appaiati e non e' quindi piu' un radicale.
Poiche' le specie chimniche con elettroni spaiati sono instabili i radicali stabili sono pochi.
Un radicale stabile interessante e' l'ossido nitrico, NO che possiede in tutto 15 elettroni ed
ha quindi un elettrone spaiato.

Buonasera professore ho qualche dubbio sulle considerazioni energetiche:
Se non ho capito male l'entalpia e' la misura dell'energia potenziale di interazione tra le
molecole; quando e' che questa risulta minima?
Inoltre non ho capito se l'una puo' prevalere sull'altra per quanto riguarda la stabilita'  del
sistema o se trattandosi di due contributi diversi non sia possibile confrontarle grazie mille.
Non sono sicuro di aver capito bene le domande. L'entalpia e' l'energia
intesa nel senso comune del termine; ad esempio l'energia di legame. Quando due atomi si
legano tra loro e si forma il legame, l'energia di legame e' energia emessa dalla molecola
sotto forma di calore (cioe' la molecola ha minore energia degli atomi isolati). Entalpia e' per
questo motivo e in questo contesto chiamata anche il calore di reazione e si misura in cal/mole.
L'entropia e' invece la probabilita'  di un certo stato del sistema e puo' essere misurata in
cal/grado.mole grazie alla legge di Boltzmann. Se nella sua domanda l'una e' l'entalpia e
l'altra e' l'entropia, la risposta e' si, si possono sommare algebricamente e la loro differenza
da  l'energia libera del sistema. Di norma noi parliamo in questo contesto di trasformazioni
(ad esempio di reazioni chimiche) e abbiamo: ΔG = ΔH - TΔS, dove ΔG: variazione di
energia libera tra gli stati finale e iniziale del sistema, ΔH: variazione di entalpia,
ΔS: variazione di entropia, T: temperatura assoluta in gradi Kelvin.

Buongiorno Professore non ho capito bene la frazione molare
La frazione molare del componente i-esimo della miscela (che si indica
con Xi) e' data dal rapporto tra il numero di moli del componente i-esimo e la somma delle
moli di ciascun componente: Xi = ni / (ni + nj + ... + nz).

Non ho capito quali sono i microstati.
Un sistema termodinamico presenta un macrostato, che e', ad esempio, il suo stato di
aggregazione. Supponiamo che il macrostato del sistema sia gassoso o liquido. Lo stesso stato puo'
corrispondere a molte disposizioni diverse delle stesse molecole: le molecole di un liquido o di un gas
si muovono le une rispetto alle altre. Ogni possibile disposizione delle molecole nello spazio corrisponde
a un microstato del sistema. Ovviamente i microstati di un sistema anche piccolo sono estremamente
numerosi.

Buonasera professore non sono riuscito a risolvere il primo quesito delle soluzioni.
E' la conversione tra due unita' di misura della concentrazione. Prova a
calcolare come prima cosa quanti grammi di saccarosio e quanti grammi di acqua sono
presenti in una certa quantita'  di soluzione. La quantita' su cui ragionare puoi sceglierla tu
perche' il risultato finale sara' lo stesso qualunque sia la quantita' scelta (ad es. 1 L).

Buonasera professore potrebbe definire il pH degli acidi deboli e cosa intendiamo con A- e_HA
Non e' possibile rispondere a una domanda come questa in questo
spazio: la spiegazione del pH e di cosa sono gli acidi e le basi deboli e' data nelle dispense
e occupa un certo spazio e varie figure, non puo' essere riscritta qui. Studi bene il materiale
presentato al link https://www.andreabellelli.it/html/didattica/generale/pH.php.
Con A- e HA intendiamo rispettivamente lo ione derivante dalla dissociazione
dell'acido debole e l'acido debole indissociato; ad esempio CH3-COO- e CH3-COOH.

Perche' le concentrazioni utilizzate sono 045 NaCl accompagnata da 5
glucosio o 0,22 NaCl e 5 glucosio e mai 0,9 %NaCl se proprio questa ha uguale p osm del sangue?
Dove ha trovato i dati citati? Le soluzioni 0,9% (peso/volume) di NaCl e
5% (peso/volume) di glucosio sono soluzioni isotoniche col sangue e sono usate entrambe
per le infusioni endovenose. Qualunque miscela di queste e' isotonica e puo' essere usata allo
stesso scopo. Esistono molte decine di soluzioni isotoniche con composizioni diverse, che
possono essere usate.

Non ho capito qual è la differenza tra una reazione endoergonica e una endotermica
Endotermica o esotermica si riferisce al calore di reazione (il delta H) e,
eventualmente al lavoro meccanico compiuto o subito dal sistema. Endoergonica o
esoergonica si riferisce alla somma di tutti i contributi energetici, entalpici ed entropici, della
reazione (il delta G).

Buonasera Professore non ho capito l'uso delle entalpie molari standard.
Nell'esempio il deltaH della reazione intermedia è 301 kcal/mole.
Il valore di -301 kcal/mole per l'H0 molare standard del glucosio è preso dalle tavole.
E' stato misurato, ovviamente, ma l'esempio presentato a lezione non indicava come viene
misurato l'H0, ma come lo si può usare. La domanda che l'esempio si poneva
era: noti i valori di l'H0 del glucosio, dell'acqua e della CO2, come è possibile
usarli per determinare il delta H della reazione di combustione del glucosio?

Se il butano ha 2 isomeri e il pentano ha 3 isomeri. Cioè il esano (?) avra 4 isomeri etc.
Quindi c'e' una regolarita' ?
Gli isomeri aumentano molto rapidamente con il numero di atomi di carbonio e la
sequenza dell'aumento non è semplice.

Qual e' la differenza tra composti polieni e composti aromatici?
Gli aromatici sono dei tipi molto particolari di polieni ciclici e devono avere anelli a 6
atomi e una alternanza di legami doppi e semplici. Queste caratteristiche consentono la delocalizzazione
degli orbitali pi greco. Il ciclobutadiene ad esempio non e' un aromatico perche' l'anello ha solo 4 atomi.

Buongiorno professore avrei una domanda: qual è la differenza tra reazione di alogenazione e
di sostituzione nucleofila?
Sta mescolando tra loro concetti diversi. L'alogenazione e' un tipo di
modificazione chimica dell'idrocarburo, nella cui molecola viene introdotto un atomo di un
alogeno (ad es. cloro o bromo). Un esempio di idrocarburo alogenato e' il cloroetano.
Sostituzione e addizione sono meccanismi di reazione (l'addizione e' nucleofila, la
sostituzione e' invece avviene con formazione di radicali), L'alogenazione puo' essere
ottenuta per sostituzione (negli alcani) o per addizione (negli alcheni).

Salve professore Nella forma 2D3D e 2L3L D e L indicano la configurazione della molecola o il potere rotatorio?
L e D indicano la configurazione stereochimica secondo la convenzione di
Fisher. Invece l e d (o - e +) indicano il potere rotatorio, rispettivamente levogiro o
destrogiro.

Perché possiamo calcolare solamente la variazione di energia interna e mai l'energia interna assoluta di un sistema?
L'energia interna di un sistema termodinamico nel quale non avvengono trasformazioni chimiche potrebbe essere misurata su una scala assoluta.
In un sistema nel quale avvengono trasformazioni chimiche viene incluso un contributo all'energia totale dovuto all'energia dei legami chimici. Questa deve es
sere misurata rispetto ad un livello di riferimento: potrebbero essere gli atomi isolati, oppure come si fa convenzionalmente gli elementi nel loro stato eleme
ntare. In ogni caso l'energia interna totale del sistema non sarebbe assoluta ma relativa al livello di riferimento, rispetto al quale costituisce una variazio
ne.

Perché il metanolo è più solubile in acqua del butanolo?
Nel metanolo la parte apolare della molecola è piccola rispetto alla parte non polare; nel butanolo avviene l'inverso.

In una reazione reversibile all'equilibrio le costanti cinetiche della reazione diretta e della reazione inversa devono essere sempre uguali?
No, le costanti essendo costanti non possono diventare uguali nella condizione di equilibrio e diverse fuori di essa. In una reazione reversi
bile ad equilibrio sono uguali le velocità delle reazioni diretta ed inversa, che sono date dal prodotto tra le costanti cinetiche e le concentrazioni dei rea
genti. Ad esempio nella reazione di isomerizzazione A<=>B con le costanti cinetiche k1 per la trasformazione A->B e k2 per B->A, la condizione di equilibrio è
raggiunta quando k1 [A] = k2 [B] ma k1 e k2 possono benissimo essere diverse (e di solito lo sono).

Professore mi scusi non ho capito perchè applicare la convenzione di Fischer agli zuccheri con più di tre atomi di carbonio non va bene
In effetti ha capito male. La convenzione di Fisher può essere applicata ai monosaccaridi
con qualunque numero di atomi di carbonio. Il problema è che negli aldosi con più di 3 atomi
di carbonio e nei chetosi con più di 4 atomi di carbonio c'è più di un solo carbonio
asimmetrico. In questi casi si scrive l'ultimo carbonio asimmetrico secondo la convenzione di
Fisher e il carbonio precedente risulta necessariamente in una configurazione che è l'inverso
della convenzione di Fisher (anti-Fisher): cioè come spiegato negli appunti sul sito, non è
possibile scrivere due centri chirali consecutivi entrambi secondo la convenzione di Fisher.
Questo perché la convenzione di Fisher dice che i C sopra e sotto quello chirale devono
essere immaginati come se si allontanassero dall'osservatore e questo è possibile per un C
asimmetrico ma non per quello immediatamente adiacente (faccia riferimento alla figura
presentata negli appunti sugli zuccheri).

Scusi professore non ho capito questa cosa: per scindere i legami richiesta energia dunque il processo puo'
essere associato ad un processo endotermico con ΔH maggiore di zero Non capisco perche' la scissione dei legami del solvente
allora debba essere considerata con un valore entalpicamente negativo
La scissione dei legami delle molecole del solvente tra loro ha un Δ H positivo, cioe' richiede energia.
Il testo della dispensa era scritto in un modo non chiaro, ora l'ho migliorato.



      Torna a: Home page del corso; didattica; pagina iniziale.