CORSO DI CHIMICA E PROPEDEUTICA BIOCHIMICA
PRIMA FACOLTA' DI MEDICINA E CHIRURGIA - CLM "B"
SAPIENZA UNIVERSITA' DI ROMA

 
 
     
 
EQUILIBRIO IONICO IN SOLUZIONE

LA REGISTRAZIONE DELLE PRESENZE IN MODALITA' TELEMATICA E' ATTIVA!
      Per registrare la tua presenza a questa lezione telematica, se il servizio e' attivo, devi inserire il tuo cognome e numero di matricola.
Cognome:
Matricola:
La presenza sara' registrata soltanto se viene completata la lettura della pagina e vengono date risposte corrette ad almeno 3 dei 4 quiz presenti in fondo alla pagina. Se la lettura viene interrotta non e' possibile effettuare un salvataggio parziale. Ricorda di premere il tasto [invia] prima di lasciare la pagina. Se il servizio di registrazione della presenza e' attivo, riceverai un messaggio di conferma. Puoi utilizzare la pagina quante volte vuoi, anche senza registrare la presenza.
      Una sezione dedicata a domande e commenti e' stata aggiunta alla fine della pagina web; se vuoi puoi utilizzarla per inserire le tue domande o commenti. Le risposte, se necessarie, verranno inserire entro qualche giorno.


      Si chiamano equilibri ionici in soluzione quelli che coinvolgono l'autoprotolisi (rilascio di ione idrogeno) del solvente. L'acqua e' un solvente capace di autoprotolisi e quindi da luogo ad equilibri ionici, di scambio di ione idrogeno. Gli equilibri ionici in soluzione acquosa sono molto importanti in medicina (il nostro corpo e' costituito peril 70% in peso da acqua), ma sono resi complicati dalla coesistenza di riferimenti a teorie diverse, che comportano una terminologia spesso imprecisa e confusa.
      Esistono tre teorie importanti, ciascuna delle quali e' una evoluzione della precedente, dovute a:
1) Arrhenius
2) Bronsted e Lowry
3) Lewis
Per gli scopi del nostro corso e' preferibile usare la seconda, ma non si puo' fare a meno di conoscere i rudimenti della prima perche' i suoi termini fondamentali sono ancora spesso usati per descrivere la fisiopatologia respiratoria.


LA TEORIA DI ARRHENIUS

      Svante Arrhenius (attivo a Stoccolma alla fine del 1800) propose la prima teoria coerente degli acidi e delle basi:
1) un acido e' una sostanza che in acqua puo dissociarsi, liberando ione idrogeno; ad es. HCl --> H+ + Cl-
2) una base (o alcali) e' una sostanza che in acqua puo dissociarsi, liberando ione idrossido (chiamato anche ione ossidrile); ad es. NaOH --> Na+ + OH-
3) una soluzione e' acida se contiene un eccesso di ione idrogeno, basica se contiene un eccesso di ione idrossido.
4) un acido (o una base) si definisce forte se si dissocia irreverisbilmente (e quindi completamente), debole se si dissocia reversibilmente (e quindi parzialmente), stabilendo un equilibrio tra le specie dissociata e indissociata. Si considerino i seguenti esempi:
acido forte: HCl --> H+ + Cl-
acido debole: HNO2 <==> H+ + NO2-
base forte: NaOH --> Na+ + OH-
base debole: NH3 + H2O <==> NH4OH <==> NH4+ + OH-


LA TEORIA DI BRONSTED E LOWRY

      La teoria di Arrhenius individua alcune caratteristiche importanti delle soluzioni acide e basiche, ma si rivelo' ben presto insufficiente; basti dire che per spiegare la basicita' delle soluzioni di ammoniaca doveva ipotizzare la formazione dell'idrossido di ammonio, un composto presente soltanto in minima quantita' nella soluzione (si veda l'esempio riportato sopra).
      Intorno al 1925, Bronsted e Lowry proposero una nuova teoria, che teneva conto di alcune scoperte rilevanti e che si ispirava alla teoria delle ossido-riduzioni. Il singolo punto piu' rilevante e' il seguente: lo ione idrogeno e' molto reattivo (infatti e' un nucleo nudo, un protone isolato) e non si trova come tale in soluzione, ma sempre combinato con altre sostanze; gli equilibrio ionici sono quindi scambi di ione idrogeno tra un donatore (l'acido) e un accettore (la base).

L'AUTOPROTOLISI DELL'ACQUA

      L'acqua, come anche altri solventi, da luogo ad una reazione acido-base con se stessa, chiamata autoprotolisi;
2 H2O <==> H3O+ + OH-

      In questa reazione una molecola d'acqua si comporta come un acido e cede uno ione idrogeno ad un'altra molecola d'acqua, che lo acquista e si comporta quindi come una base. Come vuole la teoria di Bronsted e Lowry, lo ione idrogeno non rimane isolato in soluzione, ma e' combinato con una molecola di solvente per formare lo ione idronio (H3O+).
      L'autoprotolisi dell'acqua avviene in misura molto ridotta: nell'acqua distillata a 25 C sono presenti soltanto 10-7 moli/litro di ione idronio e altrettante di ione idrossido. La costante di equilibrio risulta:
K = [H3O+] [OH-] / [H2O]2

      Poiche' la reazione avviene in misura cosi' ridotta che il consumo di acqua e' irrilevante (un litro di acqua ne contiene all'incirca 55,5 moli e la reazione consuma soltanto due decimi di milionesimo di mole), si puo' considerare costante la concentrazione dell'acqua e portarla nella costante di equilibrio; si ottiene quindi una nuova costante chiamata prodotto ionico dell'acqua (KW):
KW = K [H2O]2 = [H3O+] [OH-] = 10-14 M2

      Osserviamo che in questo capitolo faremo largo uso di questa semplificazione e denoteremo con KX la costante di equilibrio di una qualunque reazione X, moltiplicata per la concentrazione dell'acqua (o una sua potenza).

ACIDI E BASI SECONDO BRONSTED E LOWRY

      L'acido di Bronsted cede uno ione idrogeno ad una base; se il solvente e' capace di autoprotolisi e puo' quindi comportarsi sia come acido che come base, lo scambio avviene tra l'acido e il solvente. Ad esempio:
HCl + H2O --> H3O+ + Cl-

      Mentre nella teoria di Arrhenius l'acido cloridrico e' forte perche' dissocia completamente, nella teoria di Bronsted il paio formato dall'acido cloridrico e dall'acqua e' forte, perche' l'acido trasferisce irreversibilmente il suo ione idrogeno al solvente. La distinzione puo' sembrare di poco conto, ma rende ragione di un dato sperimentale importante: l'acido cloridrico e' forte in acqua ma e' invece debole in altri solventi che hanno minore tendenza all'autoprotolisi (ad es. l'etanolo).
      Un acido debole, nella teoria di Bronsted va ad equilibrio con il solvente e lo scambio di ione idrogeno e' reversibile; ad esempio:
HNO2 + H2O <==> H3O+ + NO2-

K = ([H3O+] [NO2-]) / ([HNO2] [H2O])

      Assumendo come costante la concentrazione dell'acqua si puo' scrivere:
Ka = K [H2O] = ([H3O+] [NO2-]) / [HNO2]


      La base di Bronsted accetta uno ione idrogeno da un acido; se il solvente e' capace di autoprotolisi lo accetta dal solvente. Ad esempio:
NH3 + H2O <==> NH4+ + OH-

      La base debole scambia reversibilmente lo ione idrogeno con il solvente e quindi stabilisce una condizione di equilibrio:
K = ([NH4+] [OH-]) / ([NH3] [H2O])

      Come al solito e' lecito considerare costante la concentrazione dell'acqua per ottenere:
Kb = K [H2O] = ([NH4+] [OH-]) / [NH3]


      COPPIE ACIDO-BASE CONIUGATE. La prima conseguenza della teoria di Bronsted e Lowry e' che non si puo' considerare la dissociazione dell'acido o della base "da soli": un acido non dissocia uno ione idrogeno ma lo trasferisce ad una base e viceversa. La seconda conseguenza della teoria di Bronsted e Lowry e' la seguente: dopo che lo scambio di ione idrogeno e' avvenuto, quello che prima era l'acido si trasforma in una specie chimica privata dello ione idrogeno ma potenzialmente capace di riprenderlo (e cioe' in una base, chiamata la base coniugata dell'acido). Allo stesso modo dopo lo scambio di ione idrogeno quella che prima era la base ha acquistato uno ione idrogeno che potrebbe cedere e quindi si e' trasformata in un acido (chiamato l'acido coniugato della base). La teoria prevede quindi che ogni sostanza capace di questo tipo di reazioni esista in due forme, una contenente lo ione idrogeno e l'altra priva dello ione idrogeno; queste due forme della stessa sostanza costituiscono la coppia coniugata acido-base. La coppia coniugata di Bronsted e' dichiaramente ispirata alla coppia redox (si veda il capitolo sulle ossido-riduzioni). Ovviamente, i due termini della stessa coppia coniugata non compaiono insieme nella reazione chimica: uno dei due appare tra i reagenti, l'altro tra i prodotti, ed e' corretto dire che ogni equilibrio ionico deve coinvolgere almeno due coppie coniugate:

Figura 1: Coppie acido-base coniugate

      E' molto importante sottolineare che la base coniugata dell'acido debole e' una base debole: infatti per debole si intende che la sua reazione e' reversibile ed e' ovvio che deve esserlo se l'acido di partenza e' debole: infatti l'acido debole va ad equilibrio con la sua base coniugata e non potrebbe farlo se la sua baseconiugata non andasse ad equilibrio con lui. Ovvero: l'acido e' debole perche' la reazione di formazione della base coniugata e' reversibile e questo implica che che anche la reazione inversa sia reversibile. Vedremo piu' avanti che la costante di basicita' della base coniugata dell'acido debole e' determinabile e corrisponde alla cosiddetta costante di idrolisi. Per contro se la base coniugata dell'acido debole fosse forte la sua reazione sarebbe irreversibile e non sarebbe possibile determinare una costante di equilibrio. Esattamente la stessa argomentazione si applica all'acido coniugato (debole) della base debole.
      La base coniugata dell'acido forte non ha invece un vero comportamento basico e pertanto e' base soltanto di nome ma non di fatto, mentre sulle basi forti di Bronsted e sui loro acidi coniugati bisgna fare un discorso a parte.
      Acidi e basi coniugate del solvente. Tutti i solventi capaci di autoprotolisi sono necessariamente anfoteri, cioe' capaci di comportarsi sia come basi (accettando ioni idrogeno) sia come acidi (donando ioni idrogeno). Ad esempio nel caso dell'acqua abbiamo visto nella figura 1 che l'acido coniugato di H2O e' H3O+, mentre la base coniugata di H2O e' OH-.

      BASI FORTI. Le basi forti di Bronsted sono tali in relazione all'acido con il quale si trovano a reagire: infatti nella teoria di Bronsted e' forte il paio acido-base che reagisce irreversibilmente (e debole quello che reagisce reversibilmente). Quando il solvente e' capace di autoprotolisi e quindi in presenza della base si comporta come un acido, le basi di Brosnted possono essere assegnate a due classi distinte:
      1) composti che contengono e rilasciano (in modo quantitativo e irreversibile) la base coniugata del solvente. Ad esempio, se il solvente e' l'acqua appartengono a questo gruppo gli idrossidi dei metalli alcalini e alcalino terrosi: NaOH --> Na+ + OH-
L'idrossido di un metallo alcalino e' un tipico esempio di base forte di Arrhenius perche' rilascia ione ossidrile (vedi sopra). Nella teoria di Bronsted l'idrossido del metallo alcalino non e' una base forte, ma un composto capace di liberare la base forte OH-. Coerentemente l'acido coniugato di OH- non e' NaOH ma H2O. Lo ione metallico non ha un ruolo nella teoria di Bronsted ed e' chiamato uno "ione spettatore": infatti non puo' ne' cedere ione idrogeno ne' combinarsi con questo.
      2) Composti effettivamente capaci di estrarre in modo quantitativo e irreversibile uno ione idrogeno dal solvente; se il solvente e' l'acqua una base di questo tipo e' lo ione ossido:
Na2O --> 2 Na+ + O-2
O-2 + H2O --> 2 OH-
      Consegue a questo ragionamento che, se il solvente da autoprotolisi, non puo' esistere in soluzione un acido piu' forte dell'acido coniugato del solvente ne' una base piu' forte della base coniugata del solvente. Infatti, acidi piu' forti dell'acido coniugato del solvente e basi piu' forti della base coniugata del solvente possono esistere, ma non rimangono tali in soluzione. L'acido piu' forte dell'acido coniugato del solvente (ad es. HCl) si converte integralmente e irreversibilmente nell'acido coniugato del solvente (in acqua: H3O+) e nella sua base coniugata che pero' non ha comportamento basico (Cl-). Allo stesso modo la base piu' forte della base coniugata del solvente (ad es. lo ione ossido, O-2) si converte integralmente e irreversibilmente nella base coniugata del solvente (in acqua: OH-; vedi sopra).

IL pH

      Poiche' le concentrazioni dello ione idronio sono solitamente molto basse, si ricorre ad una notazione logaritmica (N.B. il logaritmo e' l'esponente, in genere non intero, al quale bisogna elevare una base predefinita per ottenere il numero dato; ad es. il logaritmo in base 10 di 100 e' 2 perche' 100 = 102). Si definisce pH il logaritmo in base 10 cambiato di segno della concentrazione molare dello ione idronio:
pH = -log10 [H3O+]

      In analogia col pH si definiscono anche:
pOH = -log10 [OH-]
pKW = -log10 KW
pKa = -log10 Ka
pKb = -log10 Kb
      Tenendo conto che nella notazione logaritmica i prodotti diventano somme, vale la relazione:
pKW = pH + pOH

      pH DELL'ACQUA, DEGLI ACIDI E DELLE BASI. La concentrazione dello ione idronio in acqua e' determinata dalla reazione di autoprotolisi, la cui costante (prodotto ionico dell'acqua) e' KW = 10-14 M2. In assenza di soluti capaci di rilasciare o legare ione idrogeno, vale le relazione:
[H3O+] = [OH-] = √ KW = 10-7 M

dove il simbolo √ indica la radice quadrata. Di conseguenza nell'acqua pura si ha:
pH = -log10 10-7 = 7
pOH = -log10 10-7 = 7
      Una soluzione acquosa nella quale [H3O+] = [OH-] (e di conseguenza pH = pOH) e' definita neutra. Alla temperatura di 25 C il pH della soluzione neutra e' uguale a 7; pero', poiche' il Δ H dell'autoprotolisi dell'acqua e' piccolo, in genere si trascura la variazione della KW dovuta alla temperatura e si considera 7 il pH della neutralita' a qualunque temperatura.
      Se una soluzione contiene un acido o una base, la relazione pH = pOH, che era valida per l'acqua pura, non vale piu' e si ha invece:
Nel caso degli acidi:
      [H3O+] > [OH-]
      [H3O+] > 10-7 M
      pH < 7
      pOH > 7
Nel caso delle basi:
      [H3O+] < [OH-]
      [OH-] > 10-7 M
      pOH < 7
      pH > 7

      CALCOLO DEL pH DEGLI ACIDI E DELLE BASI.
      L'acido forte in acqua si converte integralmente in ione idronio (piu' la sua base coniugata, che non ha effetto sul pH); pertanto, definita Ca la sua concentrazione analitica molare, valgono le relazioni:
[H3O+] = Ca
pH = -log ([H3O+]) = -log (Ca)

      Per la base forte vale un ragionamento analogo, in quanto la base forte si converte integralmente in ione OH-; si ha quindi:
[OH-] = Cb
[H3O+] = KW / [OH-]
pOH = -log ([OH-]) = -log (Cb)
pH = 14 - pOH
Nota: la concentrazione analitica e' la concentrazione che si determinerebbe dividendo il peso della sostanza per il peso molecolare e poi per il volume, a prescindere dallo stato associato o dissociato della sostanza. La concentrazione vera dell'acido forte in acqua e' praticamente zero (l'acido e' interamente dissociato negli ioni che lo costituiscono), mentre la concentrazione analitica, che prescinde dalla dissociazione e' un numero facilmente calcolabile.

      Nel caso dell'acido debole si ha un equilibrio del tipo:
HA <==> A- + H3O+
Ka = [A-] [H3O+] / [HA]
L'ultima equazione contiene tre incognite, ma e' possibile semplificarla ricorrendo ad alcune approssimazioni che permettono di calcolare con facilita' la concentrazione dello ione idronio. In primo luogo osserviamo che, essendo la soluzione elettricamente neutra, la somma delle concentrazioni delle cariche negative deve uguagliare quella delle cariche positive:
[A-] + [OH-] = [H3O+]
Poiche' la soluzione e' acida, la concentrazione di OH- deve essere di molto inferiore a quella delle altre e puo' essere trascurata; si ottiene la seguente uguaglianza approssimativa:
[A-] ~ [H3O+]
In secondo luogo osserviamo che:
Ca = [HA] + [A-]
Pero' se l'acido e' debole e non e' troppo diluito, la concentrazione della specie dissociata A- sara' trascurabile rispetto a quella della specie indissociata; questo ci porta all'approssimazione:
Ca ~ [HA]
Se ora sostituiamo le nostre approssimazioni nella Ka otteniamo:
Ka = [A-] [H3O+] / [HA] = [H3O+]2 / Ca
e da quest'ultima otteniamo infine: C2 = Ka Ca
Quindi il calcolo della concentrazione dello ione idronio nell'acido debole utilizza la seguente formula:
[H3O+] = √ (Ka Ca)

Naturalmente una volta ottenuto il valore di [H3O+] e' la definizione stessa del pH a dirci: pH = -log ([H3O+])

      Il caso della base debole e' analogo a quello dell'acido debole:
NH3 + H2O <==> NH4+ + OH-
Kb = [NH4+] [OH-] / [NH3]
Si applicano le semplificazioni:
[NH4+] ~ [OH-]
[NH3] ~ Cb
e si ottiene:
Kb = [OH-]2 / Cb
[OH-] = √ (Kb Cb)
pOH = -log [OH-]
pH = 14 - pOH

IDROLISI SALINA

      Un sale e' un composto nel quale uno o piu' ioni positivi sono legati con legame ionico ad uno o piu' ioni negativi. Poiche' i legami ionici in acqua si rompono, i sali in soluzione acquosa sono interamente dissociati negli ioni che li costituiscono (fenomeno detto dissociazione elettrolitica).
      Gli ioni derivanti dalla dissociazione dei sali possono essere ioni spettatori (cioe' ioni che non partecipano in alcun modo alle reazioni acido-base) oppure possono essere basi coniugate di acidi deboli o acidi coniugati di basi deboli. Negli ultimi due casi questi ioni interferiscono con l'autoprotolisi dell'acqua e danno soluzioni con pH diverso da 7. Ad esempio:
NaCl --> Na+ + Cl- ione spettatore + base coniugata di HCl
NaNO2 --> Na+ + NO2-       ione spettatore + base coniugata di HNO2
NH4Cl --> NH4+ + Cl- acido coniugato di NH3 + base coniugata di HCl


      Se uno degli ioni derivanti dalla dissociazione elettrolitica del sale e' l'acido coniugato di una base debole o la base coniugata di un acido debole, esso stabilisce l'equilibrio con la specie chimica da cui deriva e per farlo deve cedere o accettare ioni idrogeno dall'acqua. Questo fenomeno si chiama idrolisi salina ed ha per conseguenza che il pH della soluzione risulta (in genere) diverso da 7. A seconda del sale che si considera l'idrolisi puo' essere acida o basica.
      caso 0) Il sale puo' essere considerato come il prodotto della neutralizzazione di un acdio forte con una base forte. Questo sale rilascia ioni incapaci di reagire con l'acqua e pertanto non da idorlisi; la sua soluzione ha pH =7.

      caso 1) Idrolisi acida: si verifica quando uno degli ioni derivanti dalla dissociazione del sale e' l'acido coniugato di una base debole. Ad esempio in una soluzione acquosa di cloruro di ammonio si verificano le seguenti reazioni:
NH4Cl --> NH4+ + Cl-
NH4+ + H2O <==> NH3 + H3O+
La costante di equilibrio della seconda reazione (la prima e' irreversibile) si chiama costante di idrolisi (Ki), e come al solito include la concentrazione dell'acqua:
Ki = [NH3] [H3O+] / [NH4+]
Si osserva che l'acido coniugato della base debole si comporta a tutti gli effetti come un acido debole e quindi valgono le semplificazioni e la relazione gia' dimostrata per gli acidi deboli (con l'avvertenza che in questo caso al posto di Ca abbiamo Cs, la concentrazione del sale; e al posto della Ka abbiamo la Ki):
[H3O+] = √ (Ki Cs)
La costante di idrolisi ha una relazione con la costante di dissociazione della base debole da cui proviene l'acido coniugato; infatti tenendo presente che [H3O+] = KW / [OH-] , la Ki puo' essere riscritta come segue:
Ki = ([NH3] KW) / ([NH4+] [OH-]) = KW / Kb
Infatti il termine [NH3] / ([NH4+] [OH-]) e' il reciproco della Kb dell'ammoniaca, di cui lo ione ammonio e' l'acido coniugato.
E' appena il caso di notare che e' possibile determinare una Ki perche' l'acido coniugato della base debole e' un acido debole (come gia' dimostrato sopra) e stabilisce un equilibrio con la base debole da cui deriva; se fosse forte non ci sarebbero ne' equilibrio ne' Ki.

      caso 2) Idrolisi basica: si verifica quando uno degli ioni derivanti dalla dissociazione del sale e' la base coniugata di un acido debole. Ad esempio in una soluzione acquosa di acetato di sodio si verificano le seguenti reazioni:
CH3-COONa --> CH3-COO-
CH3-COO- + H2O <==> CH3-COOH + OH-
La prima reazione e' irreversibile, la seconda va ad equilibrio secondo la legge di azione delle masse:
Ki = [CH3-COOH] [OH-] / [CH3-COO-] = KW / Ka
Applicando gli stessi ragionamenti gia' visti per il caso precedente, si ottiene:
[OH-] = √ (Ki Cs)
pOH = -log [OH-]
pH = 14 - pOH
Inoltre, ricordando che [OH-] = KW / [H3O+] , si puo' dimostrare che:
Ki = ([CH3-COOH] KW) / ([CH3-COO-] [H3O+])
Infatti il termine [CH3-COOH] / ([CH3-COO-] [H3O+]) e' il reciproco della Ka dell'acido acetico, di cui lo ione acetato e' la base coniugata.

      caso 3) Sali i cui ioni sono la base coniugata di un acido debole e l'acido coniugato di una base debole, quali ad esempio l'acetato di ammonio:
CH3-COONH4 --> CH3-COO- + NH4+
In questo caso entrambi glio ioni danno luogo ad idrolisi ed il pH della soluzione e' determinato dal prevalere dell'una o dell'altra delle due reazioni. Questo caso e' un equilibrio multiplo complesso e non viene trattato in modo quantitativo nel nostro corso.


SOLUZIONI TAMPONE

      La soluzione di un acido debole e di un suo sale, o di una base debole e di un suo sale, costituisce un tampone.
      Le soluzioni tampone minimizzano le variazioni del pH che si osservano a seguito dell'aggiunta alla soluzione di ulteriori acidi o basi.
      La concentrazione dello ione idrogeno nelle soluzioni acquose diluite e' molto piccola e minime aggiunte di acidi o di basi la fanno variare in modo significativo (infatti le soluzioni di acidi o di basi concentrate, che hanno valori di pH <3 o >11 sono molto piu' resistenti alle variazioni del pH); per questo le coluzioni tampone sono cosi' importanti.
      Il pH di tutti i liquidi biologici (sangue, liquido extra- ed intra-cellulare) e' mantenuto costante da sistemi tampone.
      Un esempio di tampone e' quello costituito dall'acido formico e dal suo sale formiato di sodio, che in acqua vanno incontro alle seguenti dissociazioni:
HCOONa --> HCOO- + Na+
HCOOH + H2O <==> HCOO- + H3O+
La prima reazione (dissociazione elettrolitica del sale) e' irreversibile e completa; a tutti gli effetti pratici non va ad un vero equilibrio e non possiede quindi una costante. L'idrolisi dello ione formiato, in presenza del suo prodotto (l'acido formico del tampone) puo' essere trascurata. La seconda reazione e' la dissociazione reversibile ed incompleta dell'acido debole; questa raggiunge una condizione di equilibrio chimico e obbedisce alla legge d'azione delle masse:
Ka = [HCOO-] [H3O+] / [HCOOH]
Poiche' il sale e' completamente dissociato negli ioni costituenti, mentre l'acido lo e' solo in piccola parte, si possono indicare le concentrazioni analitiche dell'acido e del sale con Ca e Cs e proporre le seguenti approssimazioni:
[HCOO-] = Cs
[HCOOH] = Ca
Queste approssimazioni trascurano l'idrolisi del sale (che trasforma un po' della base coniugata in acido) e la dissociazione dell'acido (che trasforma un po' di acido nella sua base coniugata, cioe' nel sale). Possiamo quindi riscrivere la Ka come segue:
Ka = Cs [H3O+] / Ca
Da quest'ultima formula si ricava:
[H3O+] = Ka Ca / Cs
che, trasposta in forma logaritmica, ci da l'equazione di Henderson e Hasselbalch:
pH = pKa + log (Cs / Ca)
      Come si vede il pH del tampone e' collegato al rapporto tra le concentrazioni del sale e dell'acido, che possono essere anche molto grandi; questo inibisce le variazioni del pH perche' per cambiare la concentrazione dello ione idronio bisogna anche cambiare in modo significativo Ca e/o Cs. Inoltre l'equazione di Henderson e hasselbalch ci mostra che il pH di un tampone costituito da acido debole e suo sale deve essere prossimo al pKa dell'acido utilizzato, perche' il termine correttivo e' piccolo (logaritmo di un rapporto non troppo lontano da 1). In pratica si considera che il pH di un tampone come questo sara' compreso entro una unita' sopra o sotto il pKa: pKa + 1 > pH > pKa - 1. Quando saranno descritte le titolazioni acido-base si trovera' una ragione piu' quantitativa per questa relazione.
      Cosa accade se si aggiunge acido o base a un tampone? L'aggiunta di un acido estraneo al tampone (ad es. HCl) trasforma una piccola quantita' di sale in acido secondo la reazione irreversibile:
HCOONa + HCl --> HCOOH + NaCl
L'aggiunta di una piccola quantita' di una base estranea al tampone (ad es. NaOH) trasforma una piccola quantita' di acido in sale, secondo la reazione irreversibile:
HCOOH + NaOH --> HCOONa + H2O
In entrambi i casi si ha una piccola variazione delle concentrazioni dell'acido e del sale (mentre rimane costante la loro somma Ca + Cs), che ocmporta una piccola variazione del pH, di molto inferiore a quella che si osserverebbe se l'acido o la base fossero aggiunti all'acqua o ad una soluzione non tamponata.
      Anche l'aggiunta di acidi o basi non estranei al tampone (nel nostro esempio sono non estranei HCOOH e HCOONa) comporta piccole variazioni del rapporto tra Ca e Cs; l'unica differenza rispetto al caso precedente e' che in questo caso non rimane costante la somma Ca + Cs.

      Un esempio di tampone di base debole e suo sale e' dato dal sistema ammoniaca - cloruro di ammonio, che da le reazioni:
NH4Cl --> NH4+ + Cl-
NH3 + H2O <==> NH4+ + OH-
Anche in questo caso si considerano completa ed irreversibile la dissociazione del sale e trascurabile la sua idrolisi (perche' e' presente un prodotto di reazione, l'ammoniaca). Per la reazione di dissociazione della base debole si puo' scrivere la legge di azione delle masse:
Kb = [NH4+] [OH-] / [NH3]
Come nel caso precedente si possono indicare con Cb e Cs le concentrazioni analitiche della base e del sale e fare le seguenti approssimazioni:
[NH3] = Cb
[NH4+] = Cs
Questo ci consente di scrivere:
Kb = Cs [OH-] / Cb
[OH-] = Kb Cb / Cs
Questa equazione e' analoga a quella trovata per il tampone di acido debole, con la differenza che in questo caso viene calcolata la concentrazione dello ione ossidrile anziche' dello ione idronio, e puo' essere trasformata nella forma logaritmica di di Henderson e Hasselbalch:
pOH = pKb + log (Cs / Cb)
In analogia con il caso precedente, il pOH sara' prossimo al pKb: pKb + 1 > pOH > pKb - 1.
      Anche le risposte del tampone basico all'aggiunta di acidi o basi estranee sono analoghe a quelle viste nel caso del tampone acido; infatti se si aggiunge un acido a questo tampone esso viene consumato nella reazione irreversibile:
NH3 + HCl --> NH4Cl
che trasforma un po' di base in sale. Se invece viene aggiunta al tampone una base si ha la reazione irreversibile:
NH4+ + NaOH --> NH3 H2O + Na+

      CALCOLO DELLA VARIAZIONE DI pH DEL TAMPONE IN SEGUITO AD AGGIUNTA DI ACIDI O BASI.
      Questo calcolo e' inmplicito nei principi gia' spiegati, ma viene qui reso esplicito con un esempio.
      Si abbiano 500 mL di un tampone costituito da acido acetico 0,05 M e acetato di sodio 0,04 M e si aggiunga alla soluzione 1 mL di NaOH 2 M. Calcolare il pH precedente e successivo all'aggiunta di base, sapendo che la Ka dell'acido acetico e' 1,8x10-5 M.
      Soluzione: prima dell'aggiunta di soda si aveva:
[H3O+] = Ka Ca / Cs = 1,8x10-5 x 0,05 / 0,04 = 2,25x10-5
pH = -log [H3O+] = 4,65
      La soda aggiunta reagisce con l'acido trasformandolo in sale e cambia il pH perche' cambia il rapporto Ca / Cs. La reazione e':
CH3-COOH + NaOH --> CH3-COONa + H2O
Questa reazione consuma acido e produce sale; per determinare i nuovi valori di Ca e Cs dobbiamo calcolare il numero di moli di tutti i reagenti, utilizzando la formula n = C x V:
nCH3-COOH = 0,05 M x 0,5 L = 0,025 moli
nCH3-COONa = 0,04 M x 0,5 L = 0,02 moli
nNaOH = 2 M x 0,001 L = 0,002 moli
Poiche' la reazione e' irreversibile, essa procede fino all'esaurimento del reagente presente in minor quantita' (NaOH); vengono quindi consumate 0,002 moli di acido e prodotte 0,002 moli di sale, mentre la soda viene consumata interamente. Dopo l'aggiunta i nuovi valori di Ca, Cs e [H3O+] risultano quindi:
Ca = (0,025-0,002) / 0,501 L = 0,046 M
Cs = (0,02+0,002) / 0,501 L = 0,044 M
[H3O+] = Ka Ca / Cs = 1,8x10-5 x 0,046 / 0,044 = 1,88x10-5
pH = -log [H3O+] = 4,73

Quanto detto finora sul calcolo del pH puo' essere riassunto nella seguente tabella:

            FORMULE PER IL CALCOLO DEL pH
caso:[H3O+][OH-]
acido forte (es. HCl)Ca(KW / [H3O+])
base forte (es. NaOH)(KW / [OH-])Ca
acido debole (es. CH3COOH)       √ (Ka Ca)(KW / [H3O+])
base debole (es. NH3)(KW / [OH-])√ (Kb Cb)
sale che non da idrolisi (es. NaCl)10-7 M10-7 M
idrolisi acida (es. NH4Cl)√ (Ki Cs)(KW / [H3O+])
idrolisi basica (es. CH3COONa)KW / [OH-]√ (Ki Cs)
doppia idrolisi (es. CH3COONH4)non in programmanon in programma
tampone di acido deboleKa Ca / Cs(KW / [H3O+])
tampone di base deboleKW / [OH-]Kb Cb / Cs



TITOLAZIONI ACIDO-BASE

      La titolazione e' la procedura nella quale si utilizza una reazione chimica per determinare la concentrazione (titolo) di una soluzione. In una titolazione-acido base, la reazione utilizzata e' la neutralizzazione di un acido con una base. Per effettuare una titolazione acido-base allaa soluzione a concentrazione ignota di acido (o di base) bisogna aggiungere goccia a goccia una soluzione a concentrazione nota di base (o di acido) e vengono misurati contemporaneamente il volume aggiunto (da quale si ricava il numero di moli del "titolante") ed il pH.
      La strumentazione necessaria e' piuttosto semplice: la soluzione a concentrazione ignota e' contenuta in un recipiente chiamato beker e viene costantemente rimescolata utilizzando un agitatore magnetico; in essa e' immerso l'elettrodo di un pHmetro (lo strumento che misura il pH; e' basato sui principi delle pile ed e' spiegato nella lezione sulle ossido-riduzioni). Da una buretta (recipiente sottile e graduato, dotato di rubinetto) si fa cadere il titolante nella soluzione a titolo ignoto e ogni tanto si chiude il rubinetto e si annotano il volume aggiunto ed il pH della soluzione.

      Negli esempi che seguono la reazione sara' descritta per come avviene in soluzioni a concentrazione nota: cioe' si assumera' di conoscere la concentrazione della soluzione da titolare (che nel vero esperimento sarebbe ignota) oltre a quella della soluzione titolante contenuta nella buretta (che nel vero esperimento sarebbe nota). Ovviamnete in queste condizioni la titolazione sarebbe inutile; pero' descrivere l'esperimento per la vera soluzione a titolo ignoto e' molto meno chiaro dal punto di vista didattico.

      TITOLAZIONE DI ACIDO FORTE CON BASE FORTE. E' il caso piu' semplice. L'esperimento ha lo scopo di determinare la concentrazione della soluzione di un acido forte (contenuto nel beker) utilizzando una soluzione di base forte (il titolante, contenuto nella buretta) e sfrutta la reazione acido + base --> sale + acqua. Un esempio potrebbe essere il seguente:
HCl + NaOH --> NaCl + H2O
      Quando la soluzione, inizialmente acida, diventa neutra, tutto l'acido e' stato consumato ed il numero di moli di base aggiunte e' uguale al numero di moli di acido inizialmente presente. Il pH della soluzione e' inizialmente determinato dall'acido non salificato; e' neutro quando il numero di moli di acido eguaglia il numero di moli della base perche' in soluzione e' presente soltanto il sale NaCl che e' di quelli che non danno idrolisi; e diventa infine basico quando la base e' in eccesso.
      A scopo didattico possiamo calcolare come si comporterebbe un litro di una soluzione 0,01 M di HCl titolato con NaOH 1 M (data la grande differenza di concentrazione la variazione del volume totale della soluzione puo' essere trascurata se si vuole risparmiare tempo sui calcoli). In un vero esperimento la concentrazione di HCl dovrebbe essere ignota; ma in questo esempio noi fingiamo di conoscerla allo scopo di poter compilare la seguente tabella:
ml di NaOH aggiunti (moli)moli di NaClNaOH residuoHCl residuopH
0 (0)000,012
1 (0,001)0,00100,0092,05
2 (0,002)0,00200,0082,10
3 (0,003)0,00300,0072,15
4 (0,004)0,00400,0062,22
5 (0,005)0,00500,0052,30
6 (0,006)0,00600,0042,40
7 (0,007)0,00700,0032,52
8 (0,008)0,00800,0022,70
9 (0,009)0,00900,0013
10 (0,010)0,01000,0007
11 (0,011)0,0100,0010,00011
12 (0,012)0,0100,0020,00011,30

      Che cosa e' successo nella titolazione? Prima di aggiungere soda (NaOH aggiunto = 0) avevamo in soluzione un acido forte, per il quale [H3O+] = Ca. Quando abbiamo cominciato ad aggiungere soda abbiamo in parte trasformato HCl in NaCl; la soda residua per i primi 10 ml era uguale a zero perche' tutto il reagente aggiunto veniva consumato, ed il pH della soluzione era determinato soltanto dall'acido forte in eccesso. Al decimo ml di soda il numero di moli di NaOH (calcolato con la formula n = CxV e consdierando che [NaOH] nella buretta e' 1 M) uguaglia il numero di moli di HCl (calcolato con la stessa formula ma con [HCl]=0,01 M e V=1 L) e pertanto in soluzione c'e' soltanto NaCl. Poiche' NaCl e' un sale che non causa idrolisi il pH della soluzione e' uguale a 7. Dall'undicesimo ml di soda in poi non c'e' piu' acido da salificare e si accumula base forte in soluzione; per calcolare il pH si deve usare la formula [OH-]=Cb per poi risalire al pOH ed infine al pH. Il risultato della titolazione puo' essere riportato in un grafico cartesiano che ha in ascissa il volume di NaOH aggiunto e in ordinata il pH:

      Anche se non avessimo su questa curva nessun punto a pH=7 (perche' non abbiamo aggiunto il preciso volume di soda necessario), sarebbe comunque facile tirare una curva che passi per i punti sperimentali e interpolare il volume di soda che sarebbe stato necessario per avere pH=7. Questo volume (misurato o stimato per interpolazione) e' quello al quale nacido=nbase; questa uguaglianza equivale a Cacido x Vacido = Cbase x Vbase e quindi consente di ricavare:
Cacido = Cbase x Vbase / Vacido

      TITOLAZIONE DI ACIDO DEBOLE CON BASE FORTE.
      In linea di principio questo esperimento e' analogo al precedente e consente di determinare la concentrazione dell'acido debole e la sua Ka; in pratica l'interpretazione e' piu' complessa per via degli equilibri che si instaurano in soluzione. Infatti la reazione chimica e' la stessa deò caso precedente, pero' quando nel corso della titolazione l'acido debole si trova in presenza del suo sale si forma una soluzione tampone. Inoltre quando si raggiunge il punto di equivalenza stechiometrica, la soluzione non e' neutra perche' il sale dell'acido debole da idrolisi basica. Di conseguenza la concentrazione dello ione idrogeno si determina con le seguenti formule:
[H3O+] = √ (Ka Ca) (prima di aggiungere la base)
[H3O+] = Ka Ca / Cs (nel corso della titolazione)
[OH-] = √ (Ki Cs) , KW / [OH-]       (quando si raggiunge l'equivalenza)


      A scopo didattico possiamo calcolare come si comporterebbe un litro di una soluzione 0,01 M di CH3-COOH titolato con NaOH 1 M. Come nel caso della titolazione di HCl, anche in questo caso la concentrazione dell'acido acetico dovrebbe essere ignota; ma noi fingiamo di conoscerla allo scopo di poter compilare la seguente tabella:
ml di NaOH aggiunti (moli)moli CH3-COONaNaOH residuoCH3-COOH residuopH
0 (0)000,013,37
1 (0,001)0,00100,0093,79
2 (0,002)0,00200,0084,14
3 (0,003)0,00300,0074,38
4 (0,004)0,00400,0064,57
5 (0,005)0,00500,0054,75
6 (0,006)0,00600,0044,92
7 (0,007)0,00700,0035,12
8 (0,008)0,00800,0025,35
9 (0,009)0,00900,0015,70
10 (0,010)0,01000,0008,52
11 (0,011)0,0100,0010,00011
12 (0,012)0,0100,0020,00011,30

      Il grafico della titolazione (con le annotazioni che descrivono i sistemi presenti in soluzione) e' il seguente:

      Se si espande la parte iniziale della titolazione dell'acido debole e la si confronta con la parte corrispondente della titolazione dell'acido forte si osserva che la prima presenta, a parita' di concentrazioni di acido, base e sale, un pH piu' alto e una forma caratteristica con un flesso centrale in corrispondenza del punto con ascissa nNAOH=1/2 nCH3-COOH e ordinata pH=pKa. Il reciproco della tangente della curva di titolazione dell'acido debole si chiama potere tampone, ed e' massimo laddove la curva ha la minima pendenza (ci vuole molta base per cambiare anche di poco il pH); questo avviene quando il pH e' prossimo al pKa (o, nel caso del tampone di base debole e suo sale, quando il pOH e' prossimo al pKb). In genere si assume che un tampone presenta un buon potere tampone quando il pH e' compreso tra pKa-1 e pKa+1.
      Il potere tampone e' un concetto importante. E' definito come la quantita' di acido o di base necessaria per cambiare il pH della soluzione tampone di una unita', e corrisponde, come gia' detto al reciproco della pendenza della curva di titolazione. Il potere tampone dipende dalla concentrazione del tampone (intesa come somma Ctot=Ca+Cs) e dalla relazione che intercorre tra il pH al quale viene effettuata la misura e il pK del tampone. Il potere tampone e' massimo quando il pH e' uguale al pKa (o il pOH e' uguale al pKb nel caso di tamponi di base debole). Possiamo facilmente calcolare il potere tampone in un piccolo intervallo di pH avente al centro il valore del pKa. Ad esempio per un tampone di acido debole con Ctot=1 mM e' facile calcolare:
pH = pKa - 0,5 comporta Cs/Ca = 0,316; Cs = 0,24 mM; Ca = 0,76 mM;
pH = pKa + 0,5 comporta Cs/Ca = 3,16; Cs = 0,76 mM; Ca = 0,24 mM
      Questo semplice calcolo ci dice che per cambiare il pH da pH=PKa+0,5 a pH=pKa-0,5 dobbiamo convertire 0,76-0,24=0,52 mMoli/L di sale in acido, e questo si ottiene aggiungendo al tampone 0,52 mMoli/L di acido forte; oppure, all'inverso per cambiare il pH da pKa-0,5 a pKa+0,5 dobbiamo aggiungere al tampone 0,52 mMoli/L di base forte. Pertanto il massimo potere tampone e' pari a circa 0,52 mMoli/L di acido (o base) per mMole/L di tampone. Si noti che il potere tampone e' direttamente proporzionale alla concentrazione totale del tampone stesso.


INDICATORI DEL pH

      Gli indicatori del pH sono acidi o basi deboli che assumono colore diverso nelle forme legata e non legata con lo ione idrogeno. Un esempio di indicatore del pH e' dato dal rosso fenolo:

      L'indicatore del pH viene aggiunto alla soluzione in piccolissima quantita', tale da non alterare il pH della soluzione stessa. Non puo' essere usato per misurare il pH dell'acqua, perche' essendo un acido o una base lo cambierebbe; deve essere usato per misurare il pH di tamponi, acidi, basi, sali che danno idrolisi, etc., e cioe' di soluzioni in grado di mantenere costante il loro pH a dispetto dell'aggiunta di una piccola quantita' di indicatore.
      Come si spiega il fatto che l'indicatore e' colorato e che il colore e' diverso per l'acido e per la sua base coniugata? Una sostanza e' colorata perche' puo' assorbire un quanto di luce e appare del colore complementare alla luce assorbita. Ad esempio se una sostanza appare rossa, questo vuol dire che quando la si illumina con luce bianca essa assorbe le radiazioni complementari al rosso (blu-verdi) e riflette o trasmette quelle rosse, che il nostro occhio percepisce. Per poter assorbire la luce, la sostanza deve avere due orbitali che presentino una piccola differenza di energia, in modo tale che un elettrone, assorbita l'energia di un quanto di luce, possa fare il salto quantico dall'orbitale di energia minore a quello di energia maggiore; le'nergia del quanto di luce deve quindi corrispondere alla differenza di energia tra due orbitali della molecola. E' inoltre necessario che l'orbitale di energia maggiore sia vuoto o contenga un solo elettrone, altrimenti il salto quantico non e' possibile (per il principio di esclusione di Pauli). Si chiama stato fondamentale della molecola quello nel quale gli elettroni occupano i livelli energetici piu' bassi possibili e stato eccitato quello nel quale un fotone ha promosso un elettrone in un livello energetico piu' elevato. Lo stato eccitato prima o poi decade nello stato fondamentale con emissione di luce o di calore. Poiche' la luce visibile al nostro occhio ha energie relativamente basse, le transizioni elettroniche che puo' eccitare sono piccole: spesso salti da un orbitale di legame di tipo π ad un anti-π. Questo fatto ha due conseguenze: (1) per il nostro occhio sono colorate in genere molecole organiche complesse, spesso aromatiche, con livelli elettronici π multipli e ravvicinati; (2) una sostanza puo' cambiare colore a causa di minime perdurbazioni della sua struttura che alterino anche di poco i livelli energetici degli orbitali di legame π (questo e' cio' che avviene agli indicatori quando acquistano o cedono uno ione idrogeno).
      Per descrivere il funzionamento degli indicatori, possiamo considerare un generico indicatore del pH e chiamare HIn la forma legata con lo ione idrogeno e In- la forma che lo ha ceduto. In una soluzione acquosa si stabilisce l'equilibrio:
HIn + H2O <==> In- + H3O+
che ha la costante:
KIn = [In-] [H3O+] / [HIn]
La concentrazione dello ione idronio risulta:
[H3O+] = KIn [HIn] / [In-]
Questa equazione e' analoga a quella trovata per il tampone e puo' essere scritta in forma logaritmica (eq. di Henderson e Hasselbalch):
pH = pKHIn + log ([In-] / [HIn])
L'ultima equazione correla il colore della soluzione (espresso dal rapporto [In-] / [HIn]) con il pH e pertanto ne fornisce una indicazione visiva; rispetto alla scala del pH l'indicatore da questa informazione:

      Si osserva in questa figura che l'uso di un indicatore divide la scala del pH in cinque regioni: se il pH della soluzione e' inferiore a (pKHIn - 1) la concentrazione di HIn e' largamente prevalente su quella di In- e la soluzione ci appare del colore di HIn. Se il pH e' compreso tra (pKHIn - 1) e pKHIn la concentrazione della forma dissociata (In-), pur se inferiore a quella della forma indissociata (HIn) e' significativa e il colore della soluzione ci appare come quello di HIn ma venato della tonalita' di In-. Quando pH = pKHIn la concentrazione delle due forme dell'indicatore e' la stessa e la soluzione ci appare di un colore esattamente intermedio tra quelli di HIn e In-; questo valore di pH e' quello che si determina con maggiore precisione e si chiama il punto di viraggio dell'indicatore. Se il pH e' compreso tra pKHIn e (pKHIn + 1), la concentrazione della forma dissociata (In-) prevale su quella della forma indissociata (HIn) e' significativa e il colore della soluzione ci appare come quello di In- ma venato della tonalita' di HIn. Infine se pH > (pKHIn + 1) la concentrazione di HIn e' troppo piccola per contribuire al colore della soluzione che e' risulta quindi uguale a quello della specie dissociata In-. Allo scopo di aumentare la precisione della determinazione e' possibile misurare le concentrazioni di HIn e In- con uno spettrofotometro anziche' ad occhio nudo. Si noti che la misura del pH effettuata con l'indicatore e' centrata sul pKHIn e non sulla neutralita' (pH=7); pertanto un indicatore ci dira' se la soluzione ha pH>pKHIn o pHHIn, ma non se la soluzione e' acida o basica (a meno che pKHIn = 7).

      Un esempio di uso degli indicatori del pH e' dato dal seguente problema di stechiometria. Il blu di bromofenolo e' un acido debole con pKa = 4. La sostanza ha colore arancione, mentre la sua base coniugata ha colore blu. Posto nella soluzione di un acido della quale si vuole determinare il pH, l'indicatore assume colore intermedio e il rapporto tra le forme blu e arancione, misurato allo spettrofotometro, risulta uguale a 0,3. Qual e' il pH della soluzione?
      Soluzione: sapendo che
[HIn] / [In-] = [arancione] / [blu] = 1 / 0,3
si applica l'equazione:
[H3O+] = KIn [HIn] / [In-]
e si ottiene:
[H3O+] = 10-4 x 1 / 0,33 = 3,3 x 10-4 M
Quindi il pH risulta: -log (3,3 x 10-4) = 3,48


I SISTEMI TAMPONE DEL SANGUE

      I liquidi biologici contengono sistemi tampone che ne mantengono rigorosamente costante il pH. Il valore medio del pH del sangue nella popolazione degli individui sani, a riposo, e' di 7,4 con piccole variazioni conseguenti agli scambi coi tessuti e con l'aria del polmone, a seguito dei quali il sangue prelevato dalle vene sistemiche, con pH = 7,36, e' appena piu' acido di quello prelevato dalle arterie che ha pH = 7,44. I tamponi del sangue in ordine di importanza (cioe' di concentrazione e di potere tampone) sono:
il sistema dell'emoglobinacirca 40 mEq / L
il sistema del bicarbonato / anidride carbonica       25-28 mEq / L
il sistema del fosfato circa 2 mEq / L

      Il potere tampone dell'emoglobina presenta una certa variabilita' interindividuale a causa della variabilita' nella concentrazione della proteina. Poiche' invece il sistema del bicarbonato-anidride carbonica presenta una bassa variabilita' interindividuale ed e' piu' facilmente misurabile e' quello che fornisce le piu' rilevanti informazioni cliniche. Si deve considerare che qualunque sia il sistema misurato, (emoglobina, bicarbonato, fosfato) questo fornisce comunque informazioni sul funzionamento dei tamponi del sangue nel loro insieme.

      Per capire il funzionamento dei tamponi del sangue e' importante premettere qualche nozione elementare sulla fisiologia del sistema circolatorio dell'uomo. Il percorso di una cellula del sangue (ad es. un globulo rosso) a partire dall'atrio destro del cuore e' il seguente: atrio destro - ventricolo destro - arteria polmonare - capillari polmonari - vene polmonari - atrio sinistro - ventricolo sinistro - arteria aorta - arterie sistemiche . capillari sistemici - vene sistemiche - vene cave - atrio destro. In questo percorso circolare, che ogni globulo rosso percorre in media in un minuto (e quindi circa 1500 volte al giorno), gli scambi di sostanze avvengono soltanto a livello dei capillari pomonari (dove il sangue assorbe l'ossigeno e si libera dell'anidride carbnonica) e di quelli sistemici (dove il sangue cede l'ossigeno e si carica dell'anidride carbonica prodotta dai tessuti).

      IL TAMPONE BICARBONATO - ANIDRIDE CARBONICA.
      Gli equilibri chimici di questo sistema tampone sono i seguenti:
CO2 gas <==> CO2 aq
CO2 aq + H2O <==> H2CO3
H2CO3 + H2O <==> HCO3- + H3O+
HCO3- + H2O <==> CO3-2 + H3O+
      Queste reazioni sono tutte reversibili e stabiliscono un equilibrio multiplo alquanto complicato. La prima reazione e' l'equilibrio di fase tra l'anidride carbonica gassosa e l'anidride carbonica disciolta nel sangue; avviene soltanto a livello dei capillari polmonari perche' in tutti gli altri distretti dell'organismo e' presente soltanto la forma disciolta (CO2 aq) e non c'e' gas. La costante di questo equilibrio e' il coefficiente di Henry per la CO2, pari a 0,031 mM / mmHg. La seconda reazione e' l'idratazione dell'anidride carbonica che la converte in acido carbonico. Avviene anche spontanemante ma nell'organismo e' catalizzata dall'enzima anidrasi carbonica. La terza reazione e' la prima dissociazione dell'acido carbonico; il suo prodotto e' lo ione bicarbonato; l'ultima reazione, infine, e' la seconda dissociazione dell'acido carbonico.
      Tra queste reazioni le piu' importanti nel sangue sono la prima e la terza. La seconda e' fondamentale ma la concentrazione dell'acido carbonico indissociato e' trascurabile (circa 1/700 di quella dell'anidride carbonica), mentre la quarta non avviene che in minima misura al pH del sangue perche' la sua Ka e' piccolissima. Di conseguenza gli equilibri di questo sistema tampone possono essere semplificati e ridotti a sue sole reazioni, una delle quali limitata al polmone:
CO2 gas <==> CO2 aq
CO2 aq + 2 H2O <==> HCO3- + H3O+
      L'ultima reazione, da sola, descrive il sistema tampone bicarbonato - anidride carbonica in tutti i distretti eccetto il polmone ed ha un pKa di 6,1 a 37 gradi (si noti che questo non e' il pKa dell'acido carbonico ma quello "composito" che deriva dall'aver riunito la reazione di idratazione con la prima dissociazione; il vero pKa della prima dissociazione dell'acido carbonico e' di circa 4,3).
      I valori medi delle concentrazioni del bicarbonato e dell'anidride carbonica nel sangue umano sono: [HCO3-] = 26 mM e [CO2 aq] = 1,3 mM (corrispondente nel polmone ad una pressione parziale del gas pari a 1,3 / 0,031 = 42 mmHg). Si deve ricordare che l'anidride carbonica totale (cioe' la somma di tutte le forme che la sostanza puo' assumere in soluzione: CO2 aq, H2CO3, HCO3- e CO3-2) non segue la legge di Henry e pertanto non e' possibile calcolare la pressione parziale del gas con cui e' in equilibrio, in assenza di altre informazioni (ad es. del pH della soluzione). Per contro l'anidride carbonica in soluzione come tale (cioe' la sola CO2 aq) segue la legge di Henry.
      In accordo con l'eq. di Henderson e Hasselbalch, il rapporto tra le concentrazioni del sale e dell'acido vale:
log (Cs / Ca) = pH - pKa = 7,4 - 6,1 = 1,3
(Cs / Ca) = 10 1,3 = 20
      Questo rapporto non e' ottimale per il potere tampone; pero'
1) l'anidride carbonica e' costantemente prodotta dal metabolismo, nella misura di circa 20 moli al giorno (!);
2) e' costantemente eliminata dal polmone con la respirazione (e' un gas);
3) il bicarbonato e' eliminato dal rene con l'urina, e questo ne controlla la concentrazione.
      A causa di questi meccanismi di controllo le concentrazioni del bicarbonato e dell'anidride carbonica sono mantenute assai costanti e il rapporto Cs / Ca (cioe' [HCO3-]/[CO2 aq]) varia di pochissimo; questo rende il tampone bicarbonato-anidride carbonica molto piu' efficace in vivo di quanto lo sarebbe in vitro.

      Tenendo conto dei ragionamenti fatti sopra, l'equazione di Henderson e Hasselbalch per il pH del sangue puo' essere scritta in questo modo:
pH = 6,1 + log ([HCO3-] / 0,031xPCO2)
In questa formula il bicarbonato e' espresso in mMoli/L e la PCO2 in mmHg.

      Il pH del tampone bicarbonato-anidride carbonica risente della respirazione in questo modo: nel polmone viene eliminata dal sangue la CO2; questo e' l'acido del tampone e in conseguenza della sua eliminazione la reazione di dissociazione si sposta verso sinistra, con alcalinizzazione del sangue. Per contro nei tessuti la CO2 viene prodotta e riversata nel sangue; la concentrazione dell'acido aumenta e l'equilibrio di dissociazione si sposta verso destra, acidificando il sangue. Queste variazioni dell'equilibrio acido base possono essere rappresentate come segue:


      LA FUNZIONE TAMPONE DELL'EMOGLOBINA.
      L'emoglobina e' la proteina responsabile del trasporto dell'ossigeno ed e' contenuta nei globuli rossi. Costituisce il principale tampone del sangue, ma non ha la stessa dinamica del bicarbonato, perché la sua concentrazione nel circolo puo' essere considarata costante e non e' soggetta ai fenomeni di rapida produzione ed escrzione caratteristici del bicarbonato e della CO2. L'emoglobina e' composta da quattro catene polipeptidiche uguali a due a due e chiamate α e β. Ogni coppia α-β si comporta come un acido debole poliprotico (di qui il suo elevato potere tampone).
      Molti residui aminoacidici contribuiscono alle proprieta' tampone dell'emoglobina, ma due hanno rilevanza speciale (l'aminico terminale della subunita' α e l'istidina in posizione 143 β) perche' cambiano il loro pKa nei due stati ossigenato (combinato con l'ossigeno) e desossigenato (non combinato con l'ossigeno):
H-HbO2 + H2O <==> HbO2 + H3O+       pKa = 7
H-Hb + H2O <==> Hb + H3O+       pKa = 7,8

      Sono state intenzionalmente trascurate le cariche di queste molecole (cioe' non ho scritto Hb- ma Hb) perche' le proteine sono molecole molto grandi con numerose cariche sia positive che negative e quindi ho preferito trascurare questo punto). Per ciascuno dei due stati della proteina e' possibile scrivere una equazione di Henderson e Hasselbalch, tenendo pero' presente che il pH del sangue e' lo stesso ed e' comune alle due equazioni:
pH = 7,8 + log ([Hb] / [H-Hb]) = 7 + log ([HbO2] / [H-HbO2])
      Si osserva che la desossiemoglobina e' un acido piu' debole della ossiemoglobina, ed il suo pKa (7,8) e' un po' maggiore del pH del sangue: pertanto nel sangue la dessosiemoglobina rende ad acquistare ioni idrogeno ed e' prevalentemente presente nella forma dell'acido (H-Hb). Per contro per la ossiemoglobina vale l'opposto e la forma prevalente nel sangue e' quella della base coniugata, priva di ione idrogeno (HbO2). La reazione prevalente nei capillari polmonari, in presenza di un eccesso di ossigeno, e':
H-Hb + O2 + H2O <==> HbO2 + H3O+
Per contro, nei capillari sistemici (in difetto di ossigeno) si ha:
HbO2 <==> H-Hb + O2 + OH-
      Il sistema bicarbonato-anidride carbonica acidifica il sangue nei capillari sistemici e lo alcalinizza nei capillari polmonari; il tampone dell'emoglobina funziona in modo opposto e la sinergia tra i due tamponi e' un ulteriore meccanismo inteso a minimizzare le variazioni del pH del sangue: ovvero, non solo nel sangue i due tamponi coesistono e lavorano ciascuno per suo conto, ma ciascuno corregge il pH in direzione opposta all'altro realizzando un sistema complessivo molto efficiente nel rendere piccolissime le oscillazioni del pH. Il funzionamento complessivo dei due principali tamponi del sangue puo' essere schematizzato come riportato nella figura seguente:


      Il sistema del FOSFATO da un contributo minore alla stabilizzazione del pH del sangue. L'acido fosforico e' poliprotico e presenta tre dissociazioni successive; tra queste quella che esercita il ruolo di tampone nel sangue e' la seconda che presenta pKa = 7,2:
H2PO4- + H2O <==> HPO42- + H3O+

      CONCETTI CLINICI.
      Gli equilibri acido-base del sangue sono complessi e dipendono da fattori anatomo-fisiologici esterni al sangue, la funzionalita' respiratoria e renale. Poiche' l'anidride carbonica e' un gas, il pH del sangue si misura nell'emogas analisi, insieme con le concentrazioni della CO2, del bicarbonato, ed altri parametri. Il polmone controlla la [CO2], ma non il bicarbonato; il rene controlla il bicarbonato ma non la [CO2]; pertanto squilibri selettivi sono frequenti nel corso di malattie del polmone, del rene o del metabolismo. Nessun organo controlla direttamente il pH, che dipende dal rapporto tra [HCO3-] e [CO2]. Principi di base per l'interpretazione dell'emogas analisi sono i seguenti:
1) il primo parametro da valutare e' il pH: un pH arterioso inferiore a 7,4 suggerisce acidosi, uno superiore a 7,44 suggerisce alcalosi.
2) Il secondo parametro da prendere in considerazione e' la concentrazione della CO2 (valori normali: 1,2 -1,3 mM corrispondenti a una PCO2 di 40-45 mmHg); valori superiori indicano riduzione degli scambi gassosi nel polmone, valori inferiori aumentati scambi gassosi (iperpnea).
3) Il terzo parametro da prendere in considerazione e' la concentrazione del bicarbonato nel plasma. Il valore normale e' 26-28 mM. Valori superiori indicano che il rene sta risparmiando bicarbonato con un aumentato riassorbimeto dalle urine; valori inferiori che il rene sta elinminando bicarbonato in eccesso.

      Alla luce delle considerazioni sopra esposte e tenendo conto che le alterazioni del funzionamento polmonare alterano la PCO2 molto rapidamente, mentre le alterazioni della funzionalita' renale alterano il bicarbonato sulla scala di parecchi giorni, possiamo affermare che:
1) una malattia polmonare acuta che causi riduzione dell'efficacia degli scambi gassosi (ad es.: polmonite virale; edema polmonare; etc.) causera' un improvviso aumento della PCO2 con modesto aumento del bicarbonato e severa acidosi (acidosi respiratoria acuta).
2) una iperpnea prolungata (ad es. respiro di Kussmaul, malattia dell'alta quota, etc.) causera' una diminuzione della PCO2 non compensata da una corrispondente eliminazione renale di bicarbonato, e una severa alcalosi (alcalosi respiratoria acuta).
3) nel corso di una malattia polmonare cronica l'aumento della PCO2 sara' parzialmente compernsato dalla ritenzione renale del bicarbonato; il rapporto [HCO3-]/[CO2] sara' riportato verso la normalita' e l'acidosi sara' modesta (acidosi respiratoria cronica con compenso renale); la CO2 totale sara' pero' fortemente aumentata.
4) l'iperpnea cronica e' rara e si osserva nelle popolazioni che vivono stabilmente a quote molto elevate (ad es. nelle Ande, che sono abitate fino a quote prossime ai 4.000 m). La diminuzione della PCO2 e' parzialmente compensata dall'aumentata eliminazione renale del bicarbonato e quindi si osserva una modesta alcalosi associata a una severa diminuzione della CO2 totale (alcalosi respiratoria cronica con compenso renale).
5) Malattie metaboliche che causano la sovraproduzione di acidi etsranei al tampone bicarbonato provocano acidosi metabolica. Il polmone cerca di compensare l'acidosi eliminando una maggiore quantita' di CO2 (l'acido del principale tampone del sangue). Il risultato e' l'acidosi metabolica con compenso respiratorio (acidosi con ridotta CO2 totale).
6) Malattie che causano perdita di acidi (ad es. vomito prolungato) causano alcalosi metaboliche. Il compenso si attua con il tentativo del polmone e del rene di risparmiare CO2 e bicarbonato, che in questa condizione risultano aumentati.

Principali condizioni che alterano il pH ematico
  pH CO2 bicarbonato
acidosi respiratoria acuta << 7,4 fortemente aumentato moderatamente aumentato
acidosi respiratoria cronica
(con compenso renale)
< 7,4 fortemente aumentato fortemente aumentato
acidosi metabolica
(con compenso respiratorio)
< 7,4 fortemente diminuito fortemente diminuito
alcalosi respiratoria acuta >> 7,4 fortemente diminuito moderatamente diminuito
alcalosi respiratoria cronica
(con compenso renale)
> 7,4 fortemente diminuito fortemente diminuito
alcalosi metabolica
(con compenso respiratorio)
> 7,4aumentato fortemente aumentato

In medicina si usano anche indicatori e misure "funzionali", i piu' rilevanti e diffusi tra i quali sono i seguenti:
      - ECCESSO DI BASE (base excess; un concetto introdotto da Astrup e Siggaard Andersen nel 1958): il numero di mEq di acido forte necessario per riportare a 7,40 il pH di un litro di sangue equilibrato con 40 mmHg di CO2 e 150 mmHg di O2 alla temperatura di 37 gradi. Se il pH del sangue del paziente nelle condizioni date e' inferiore a 7,40 per riportarlo a questo pH e' necessaria base forte anziche' acido forte e la quantita' di base forte necessaria e' una misura del DIFETTO DI BASE (base deficit, si indica con il segno negativo). Il sangue dell'individuo sano ha un eccesso di base prossimo a zero (in genere si indicano come limiti i valori di +2 e -2 mEq/L).
      - BICARBONATO STANDARD: la concentrazione dello ione bicarbonato nel plasma del paziente, misurato dopo aver equilibrato con 40 mmHg di CO2 e 150 mmHg di O2 alla temperatura di 37 gradi.
      - ANION GAP: la differenza tra la somma dei cationi misurati e gli anioni misurati: AG = ([Na+]+[K+]) - ([Cl-]+[HCO3-]). Il valore normale dell'anion gap e' di circa 15 mEq/L. Un aumento dell'anion gap indica la presenza di anioni non misurati (ad es. acidosi lattica,chetoacidosi diabetica, etc.)

Esempi di condizioni fisiologiche e patologiche del pH del sangue arterioso
 valori medi per l'adulto sanochetoacidosi diabeticaadattamento all'alta quota
PO295 mmHg95 mmHg70 mmHg
PCO240 mmHg25 mmHg25 mmHg
[HCO3-]26 mM10 mM20 mM
CO2 totale27 mM11 mM21 mM
anion gap15 mEq/L25 mEq/L15 mEq/L
pH7,427,27,55



ACIDI POLIPROTICI E BASI POLIFUNZIONALI

      Esistono acidi che possono cedere piu' di un solo ione idrogeno e basi che possono accettarne piu' di uno solo. In entrambi i casi questi elettroliti possono essere forti o deboli e, se sono deboli, presentano tante costanti di dissociazione quanti sono i loro gruppi ionizzabili. Ad esempio:
H2SO4 + 2 H2O --> SO4-2 + 2 H3O+
H2C2O4 + 2 H2O <==> HC2O4- + H3O+ + H2O <==> C2O4-2 + 2 H3O+
Mg(OH)2 --> Mg+2 + 2 OH-
C4H12N2 + 2 H2O <==> C4H13N2+ + H2O + OH- <==> C4H14N2+2 + 2 OH-


      BASI FORTI POCO SOLUBILI
      Le soluzioni di acidi e basi sono tollerate dai tessuti del nostro organismo (ad esempio nell'alimentazione) soltanto se la loro acidita' o basicita' sono modeste; le soluzioni concentrate di acidi o basi sono caustiche e, per contatto cutaneo o ingerite producono delle gravi lesioni tissutali. Come conseguenza non e' possibile somministrare a scopo terapeutico ne' soluzioni di acidi o basi forti, ne' soluzioni concentrate di acidi o basi deboli.
      Alcuni composti comunemente impiegati nel trattamento sintomatico dell'iperacidita' gastrica sono basi forti poco solubili, che hanno grande basicita' potenziale (perche' possono rilasciare molto ione idrossido se si sciolgono tutte), ma pH solo debolmente basico (perche' si sciolgono solo in minima parte). I composti di questo genere sono in genere basi polifunzionali: idrossidi di metalli bivalenti o trivalenti, quali l'idrossido di magnesio (comunemente chiamato magnesia: Mg(OH)2) o l'idrossido di alluminio (Al(OH)3; la miscela degli idrossidi di magnesio e alluminio si vende in farmacia col nome di maalox). Come esempio di questa classe di composti e delle sue reazioni, consideriamo l'idrossido di magnesio:
Mg(OH)2 solido <==> Mg+2aq + 2 OH-
Come per tutti i composti poco solubili, anche per l'idrossido di magnesio possiamo definire una costante prodotto di solubilita':
Kps = [Mg+2] [OH-]2 = 4 S3 = 1,2 x 10-11 M3
Dove S indica la concentrazione della soluzione satura. Per calcolare il pH della soluzione satura si fa in primo luogo l'ipotesi che sia possibile trascurare lo ione idrossido proveniente dall'autoprotolisi dell'acqua e si ottiene:
[OH-] = 2 S = 2 (Kps / 4)1/3 = 2,9 x 10-4 M
pOH = -log [OH-] = 3,54
pH = pKW - pOH = 10,46
A posteriori si verifica che l'approssimazione che ci ha suggerito di tracsurare il contributo alla [OH-] dell'autoprotolisi dell'acqua era corretta: infatti la concentrazione dello ione idrossido rilasciato dalla base (2,9 x 10-4 M) e' molto maggiore di quella dovuta all'acqua, il cui contributo e' quindi effettivamente trascurabile.
      L'acidita' dello stomaco, sottraendo ione idrossido alla soluzione grazie alla reazione H3O+ + OH- --> 2 H2O , causa la dissociazione di ulteriore base dal corpo di fondo e quindi si neutralizza da se stessa.


      SALI POCO SOLUBILI DEGLI ACIDI DEBOLI.
      Anche questo e' un caso molto interessante per la medicina, per due ragioni:
1) la matrice minerale dell'osso e' costituita da fosfato di calcio, un sale poco solubile dell'acido fosforico (che e' un acido debole)
2) il 90% dei calcoli urinari e' costituito almeno in parte da ossalato di calcio (un altro sale poco solubile di acido debole).
Esistono inoltre altre applicazioni, di minore importanza medica. Considereremo l'esempio dell'ossalato di calcio, relativamente semplice, perche' consente alcune considerazioni rilevanti.
      L'acido ossalico e' un acido diprotico debole, che ha la formula e le reazioni seguenti:

Per semplicita' nel trattamento che segue useremo le formule brute H2C2O4, HC2O4- e C2O4-2. L'ossalato di calcio e' un sale poco solubile, di formula CaC2O4; per semplicita' assumeremo che non si formi affatto il sale acido, di formula Ca(HC2O4)2.

      Le due reazioni di ionizzazione dell'acido ossalico presentano le costanti:
Ka, 1 = 5,9 x 10 -4 M ; Ka, 2 = 6,4 x 10 -5 M
      Il prodotto di solubilita' dell'ossalato di calcio e':
Kps = [C2O4-2] [Ca+2] = 1,3 x 10-9 M2
      Supponiamo che 100 mL di urina a pH = 7 contengano 2 mMoli di ossalato totale e 1 mMole di ione calcio totale:
H2C2O4 + HC2O4- + C2O4-2 + CaC2O4 = 2 mMoli
Ca+2 + CaC2O4 = 2 mMoli
      Per effettuare il calcolo completo degli equilibri ionici in soluzione in queste condizioni si procede come segue. In primo luogo calcoliamo quale sia il rapporto tra le concentrazioni delle specie solubili dell'ossalato, utilizzando le due Ka ed il pH (noto) del campione:
Ka, 1 = 5,9 x 10 -4 M = [HC2O4-] [H3O+] / [H2C2O4]
[HC2O4-] / [H2C2O4] = Ka, 1 / [H3O+] = 5,9 x 103
      Il calcolo dimostra che a pH = 7 ([H3O+] = 10-7 M) lo ione HC2O4- e' 5900 volte piu' concentrato dell'acido indissociato H2C2O4. Analogamente:
Ka, 2 = 6,4 x 10 -5 M = [C2O4-2] [H3O+] / [HC2O4-]
[C2O4-2] / [HC2O4-] = Ka, 2 / [H3O+] = 6,4 x 102
      A pH = 7 lo ione C2O4-2 e' 640 volte piu' concentrato dello ione HC2O4-. Questi calcoli dimostrano quindi che i rapporti tra le concentrazioni delle specie solubili dell'ossalato sono i seguenti: [H2C2O4]:[HC2O4-]:[C2O4-2] = 1 : 5900 : (5900x640) = 1 : 5.900 : 3.776.000 . In pratica l'unica specie presente in concentrazione significativa e' lo ione C2O4-2.
      Dato il Kps molto basso, e dato che lo ione calcio e' in difetto, possiamo assumere che lo ione calcio sia presente soprattutto nel precipiatto e che la sua concentrazione in soluzione sia trascurabile; Questo suggerisce che il precipitato corrisponda a 1 mMole di CaC2O4 e che sia presente in soluzione (2-1) = 1 mMole di ione C2O2-2. Le concentrazioni di tutte le specie presenti in 100 mL di urina risultano pertanto:
speciemoli totali presentimoli in soluzioneconcentrazione
[H3O+]   10-7 M
CaC2O40,00100
C2O4-20,0010,0010,01 M
HC2O4-0,001 / 640 = 1,56 x 10-61,56 x 10-61,56 x 10-5 M
H2C2O41,56 x 10-6 / 5900 = 0,26 x 10-9     0,26 x 10-92,6 x 10-9 M
Ca+200Kps / [C2O4-2] = 1,3 x 10-7 M

      Le concentrazioni delle specie Ca+2, HC2O4- e H2C2O4 sono molto basse o nulle e questo conferma che l'approssimazione per cui il precipitato ammonta ad 1 mMole di CaC2O4 era accettabile. Inoltre a questo pH la precipitazione del sale e' pressoche' completa.

Domande (la risposta e' obbligatoria se e' stata attivata la registrazione elettronica della presenza)
1) Un tampone contiene
un acido o base forte e un suo sale
un acido o base debole
un acido o base debole e un suo sale

2) La formula usata per calcolare il pH di una soluzione di HCOONa e':
[H3O+] = √ (Ka x Ca); pH = -log [H3O+]
[OH-] = √ (Kb x Cb); pH = 14 + log [OH-]
[OH-] = √ (Kw/Ka x Cs); pH = 14 + log [OH-]

3) Il piu' importante tampone del sangue e':
il bicarbonato
l'emoglobina
il fosfato

4) Il blu di bromofenolo e' un acido debole con pK=4, arancione nella forma indissociata e blu nella forma dissociata. Messo in una soluzione a pH=2 assume colore
arancione
blu
intermedio tra il blu e l'arancione

Il tuo punteggio: 0
La tua presenza non e' stata registrata perche' il sistema non e' attivo o non hai inserito il numero di matricola.

Puoi inserire le tue domande o commenti nello spazio qui sotto (lunghezza massima = 160 caratteri):



Buonasera Professore ho 2 domande:
1 Nel funzionamento della PET lei ci ha detto che il radiofarmaco utilizzato il glucosio marcato
con l'isotopo 19 del Fluoro mentre su questo sito c'e' scritto che l'isotopo utilizzato il Fluoro 18.
2 Come mai la cinetica radioattiva ha andamento discontinuo??
1 Ha ragione il sito, mi devo essere sbagliato, l'emettitore beta meno e' 18F.
2 La cinetica radioattiva e' una funzione probabilistica: ogni atomo ha una certa probabilita' di
trasformarsi nell'unita' di tempo. Se la quantita' degli atomi e' sufficientemente piccola e'
possibile seguire i singoli eventi di decadimento. Tra un evento e l'altro non accade nulla.
L'esponenziale e' l'integrale di questa funzione probabilistica.


Non ho capito bene l'ibridazione
L'ibridazione e' il fenomeno per cui due orbitali atomici che hanno una
parziale sovrapposizione possono cambiare forma e produrre due orbitali ibridi con minore
sovrapposizione. Consegue all'interazione tra le funzioni d'onda degli elettroni, e al fatto che
gli elettroni essendo carichi negativamente tendono a respingersi tra loro: gli orbitali ibridi
minimizzano le aree di sovrapposizione reciproca, allontanando tra loro gli elettroni di
orbitali diversi.


Scusi professore la differenza di intensita' del campo elettromagnetico per
ogni nucleo e' dovuta al diverso numero di particelle oppure ad altro?
Ogni nucleo genera attorno a se un campo elettrostatico la cui intensita' 
dipende dalla sua carica, cioe' dal numero di protoni.


Ho una domanda non ho capito esattamente qual e' la differenza tra nuclear spin
e nuclear momento? E' diverso da zero solo quando il numero di protoni e neutroni e' ...?
C'e' una buona spiegazione della risonanza magnetica nucleare su
questo sito.
In pratica ogni particella nucleare ha il suo spin (rotazione sul suo asse) e lo spin vale
+1/2 o -1/2
1) Se i protoni e i neutroni sono entrambi pari, allora il nucleo ha spin zero.
2) Se i protoni e i neutroni sono gli uni pari e gli altri dispari, allora il nucleo ha spin
semi-intero (1/2, 3/2, 5/2, ...).
3) Se i protoni e i neutroni sono entrambi dispari, allora il nucleo ha spin intero (1, 2, 3, ...)
Tutti i nuclei con spin diverso da zero sono osservabili all'NMR, ciascuno e' eccitabile con
la sua frequenza caratteristica.
Il momento magnetico e' il vettore campo magnetico generato dallo spin.

Non ho capito bene l'orbitale anti-sigma
La sovrapposizione di due orbitali atomici forma due orbitali di legame:
uno con la massima densita' elettronica nella zona di massima sovrapposizione tra i due
orbitali atomici (orbitale di legame sigma) e uno con la massima densita' elettronica nelle
regioni nelle quali non vi e' sovrapposizione (orbitale anti-sigma). Perche' il legame sia stabile
e' necessario che l'orbitale sigma, a minima energia, sia popolato da due elettroni e l'orbitale
anti-sigma non sia popolato da elettroni. Aggiungero' una figura per illustrare questo
concetto nel testo della lezione sul sito.

Non ho capito la differenza tra uno ione e un (atomo) radicale
Uno ione e' un atomo (o una molecola nel caso degli ioni poliatomici) che
ha perduto o acquistato uno o piu' elettroni. Uno ione monoatomico e' stabile se acquisisce
la configurazione elettronica del gas nobile piu' vicino nella tavola periodica. Ad esempio lo
ione sodio ha la configurazione elettronica perde un elettrone per raggiungere la stessa
configurazione elettronica del gas nobile che precede il sodio (il neon), mentre il fluoro
ottiene lo stesso risultato acquistando un elettrone e trasformandosi nello ione fluoruro.
Na+, Ne e F- hanno la stessa configurazione elettronica:
1s2 2s2 2p6.
Un radicale e' un atomo o una molecola che possiede uno o piu' elettroni spaiati. Ad esempio
l'atomo di sodio ha la configurazione elettronica 1s2 2s2 2p6 3s1
ed e' quindi un radicale se considerato in forma isolata; quando perde un elettrone e si
trasforma nello ione sodio, ha tutti elettroni appaiati e non e' quindi piu' un radicale.
Poiche' le specie chimniche con elettroni spaiati sono instabili i radicali stabili sono pochi.
Un radicale stabile interessante e' l'ossido nitrico, NO che possiede in tutto 15 elettroni ed
ha quindi un elettrone spaiato.

Buonasera professore ho qualche dubbio sulle considerazioni energetiche:
Se non ho capito male l'entalpia e' la misura dell'energia potenziale di interazione tra le
molecole; quando e' che questa risulta minima?
Inoltre non ho capito se l'una puo' prevalere sull'altra per quanto riguarda la stabilita'  del
sistema o se trattandosi di due contributi diversi non sia possibile confrontarle grazie mille.
Non sono sicuro di aver capito bene le domande. L'entalpia e' l'energia
intesa nel senso comune del termine; ad esempio l'energia di legame. Quando due atomi si
legano tra loro e si forma il legame, l'energia di legame e' energia emessa dalla molecola
sotto forma di calore (cioe' la molecola ha minore energia degli atomi isolati). Entalpia e' per
questo motivo e in questo contesto chiamata anche il calore di reazione e si misura in cal/mole.
L'entropia e' invece la probabilita'  di un certo stato del sistema e puo' essere misurata in
cal/grado.mole grazie alla legge di Boltzmann. Se nella sua domanda l'una e' l'entalpia e
l'altra e' l'entropia, la risposta e' si, si possono sommare algebricamente e la loro differenza
da  l'energia libera del sistema. Di norma noi parliamo in questo contesto di trasformazioni
(ad esempio di reazioni chimiche) e abbiamo: ΔG = ΔH - TΔS, dove ΔG: variazione di
energia libera tra gli stati finale e iniziale del sistema, ΔH: variazione di entalpia,
ΔS: variazione di entropia, T: temperatura assoluta in gradi Kelvin.

Buongiorno Professore non ho capito bene la frazione molare
La frazione molare del componente i-esimo della miscela (che si indica
con Xi) e' data dal rapporto tra il numero di moli del componente i-esimo e la somma delle
moli di ciascun componente: Xi = ni / (ni + nj + ... + nz).

Non ho capito quali sono i microstati.
Un sistema termodinamico presenta un macrostato, che e', ad esempio, il suo stato di
aggregazione. Supponiamo che il macrostato del sistema sia gassoso o liquido. Lo stesso stato puo'
corrispondere a molte disposizioni diverse delle stesse molecole: le molecole di un liquido o di un gas
si muovono le une rispetto alle altre. Ogni possibile disposizione delle molecole nello spazio corrisponde
a un microstato del sistema. Ovviamente i microstati di un sistema anche piccolo sono estremamente
numerosi.

Buonasera professore non sono riuscito a risolvere il primo quesito delle soluzioni.
E' la conversione tra due unita' di misura della concentrazione. Prova a
calcolare come prima cosa quanti grammi di saccarosio e quanti grammi di acqua sono
presenti in una certa quantita'  di soluzione. La quantita' su cui ragionare puoi sceglierla tu
perche' il risultato finale sara' lo stesso qualunque sia la quantita' scelta (ad es. 1 L).

Buonasera professore potrebbe definire il pH degli acidi deboli e cosa intendiamo con A- e_HA
Non e' possibile rispondere a una domanda come questa in questo
spazio: la spiegazione del pH e di cosa sono gli acidi e le basi deboli e' data nelle dispense
e occupa un certo spazio e varie figure, non puo' essere riscritta qui. Studi bene il materiale
presentato al link https://www.andreabellelli.it/html/didattica/generale/pH.php.
Con A- e HA intendiamo rispettivamente lo ione derivante dalla dissociazione
dell'acido debole e l'acido debole indissociato; ad esempio CH3-COO- e CH3-COOH.

Perche' le concentrazioni utilizzate sono 045 NaCl accompagnata da 5
glucosio o 0,22 NaCl e 5 glucosio e mai 0,9 %NaCl se proprio questa ha uguale p osm del sangue?
Dove ha trovato i dati citati? Le soluzioni 0,9% (peso/volume) di NaCl e
5% (peso/volume) di glucosio sono soluzioni isotoniche col sangue e sono usate entrambe
per le infusioni endovenose. Qualunque miscela di queste e' isotonica e puo' essere usata allo
stesso scopo. Esistono molte decine di soluzioni isotoniche con composizioni diverse, che
possono essere usate.

Non ho capito qual è la differenza tra una reazione endoergonica e una endotermica
Endotermica o esotermica si riferisce al calore di reazione (il delta H) e,
eventualmente al lavoro meccanico compiuto o subito dal sistema. Endoergonica o
esoergonica si riferisce alla somma di tutti i contributi energetici, entalpici ed entropici, della
reazione (il delta G).

Buonasera Professore non ho capito l'uso delle entalpie molari standard.
Nell'esempio il deltaH della reazione intermedia è 301 kcal/mole.
Il valore di -301 kcal/mole per l'H0 molare standard del glucosio è preso dalle tavole.
E' stato misurato, ovviamente, ma l'esempio presentato a lezione non indicava come viene
misurato l'H0, ma come lo si può usare. La domanda che l'esempio si poneva
era: noti i valori di l'H0 del glucosio, dell'acqua e della CO2, come è possibile
usarli per determinare il delta H della reazione di combustione del glucosio?

Se il butano ha 2 isomeri e il pentano ha 3 isomeri. Cioè il esano (?) avra 4 isomeri etc.
Quindi c'e' una regolarita' ?
Gli isomeri aumentano molto rapidamente con il numero di atomi di carbonio e la
sequenza dell'aumento non è semplice.

Qual e' la differenza tra composti polieni e composti aromatici?
Gli aromatici sono dei tipi molto particolari di polieni ciclici e devono avere anelli a 6
atomi e una alternanza di legami doppi e semplici. Queste caratteristiche consentono la delocalizzazione
degli orbitali pi greco. Il ciclobutadiene ad esempio non e' un aromatico perche' l'anello ha solo 4 atomi.

Buongiorno professore avrei una domanda: qual è la differenza tra reazione di alogenazione e
di sostituzione nucleofila?
Sta mescolando tra loro concetti diversi. L'alogenazione e' un tipo di
modificazione chimica dell'idrocarburo, nella cui molecola viene introdotto un atomo di un
alogeno (ad es. cloro o bromo). Un esempio di idrocarburo alogenato e' il cloroetano.
Sostituzione e addizione sono meccanismi di reazione (l'addizione e' nucleofila, la
sostituzione e' invece avviene con formazione di radicali), L'alogenazione puo' essere
ottenuta per sostituzione (negli alcani) o per addizione (negli alcheni).

Salve professore Nella forma 2D3D e 2L3L D e L indicano la configurazione della molecola o il potere rotatorio?
L e D indicano la configurazione stereochimica secondo la convenzione di
Fisher. Invece l e d (o - e +) indicano il potere rotatorio, rispettivamente levogiro o
destrogiro.

Perché possiamo calcolare solamente la variazione di energia interna e mai l'energia interna assoluta di un sistema?
L'energia interna di un sistema termodinamico nel quale non avvengono trasformazioni chimiche potrebbe essere misurata su una scala assoluta.
In un sistema nel quale avvengono trasformazioni chimiche viene incluso un contributo all'energia totale dovuto all'energia dei legami chimici. Questa deve es
sere misurata rispetto ad un livello di riferimento: potrebbero essere gli atomi isolati, oppure come si fa convenzionalmente gli elementi nel loro stato eleme
ntare. In ogni caso l'energia interna totale del sistema non sarebbe assoluta ma relativa al livello di riferimento, rispetto al quale costituisce una variazio
ne.

Perché il metanolo è più solubile in acqua del butanolo?
Nel metanolo la parte apolare della molecola è piccola rispetto alla parte non polare; nel butanolo avviene l'inverso.

In una reazione reversibile all'equilibrio le costanti cinetiche della reazione diretta e della reazione inversa devono essere sempre uguali?
No, le costanti essendo costanti non possono diventare uguali nella condizione di equilibrio e diverse fuori di essa. In una reazione reversi
bile ad equilibrio sono uguali le velocità delle reazioni diretta ed inversa, che sono date dal prodotto tra le costanti cinetiche e le concentrazioni dei rea
genti. Ad esempio nella reazione di isomerizzazione A<=>B con le costanti cinetiche k1 per la trasformazione A->B e k2 per B->A, la condizione di equilibrio è
raggiunta quando k1 [A] = k2 [B] ma k1 e k2 possono benissimo essere diverse (e di solito lo sono).

Professore mi scusi non ho capito perchè applicare la convenzione di Fischer agli zuccheri con più di tre atomi di carbonio non va bene
In effetti ha capito male. La convenzione di Fisher può essere applicata ai monosaccaridi
con qualunque numero di atomi di carbonio. Il problema è che negli aldosi con più di 3 atomi
di carbonio e nei chetosi con più di 4 atomi di carbonio c'è più di un solo carbonio
asimmetrico. In questi casi si scrive l'ultimo carbonio asimmetrico secondo la convenzione di
Fisher e il carbonio precedente risulta necessariamente in una configurazione che è l'inverso
della convenzione di Fisher (anti-Fisher): cioè come spiegato negli appunti sul sito, non è
possibile scrivere due centri chirali consecutivi entrambi secondo la convenzione di Fisher.
Questo perché la convenzione di Fisher dice che i C sopra e sotto quello chirale devono
essere immaginati come se si allontanassero dall'osservatore e questo è possibile per un C
asimmetrico ma non per quello immediatamente adiacente (faccia riferimento alla figura
presentata negli appunti sugli zuccheri).

Scusi professore non ho capito questa cosa: per scindere i legami richiesta energia dunque il processo puo'
essere associato ad un processo endotermico con ΔH maggiore di zero Non capisco perche' la scissione dei legami del solvente
allora debba essere considerata con un valore entalpicamente negativo
La scissione dei legami delle molecole del solvente tra loro ha un Δ H positivo, cioe' richiede energia.
Il testo della dispensa era scritto in un modo non chiaro, ora l'ho migliorato.

Salve Professore non capisco come la minore energia dell'orbitale sigma sia
correlata all'alta intensità del campo nelle aree di sovrapposizione degli orbitali atomici
L'energia con la quale il nucleo attrae l'elettrone e' misurata prendendo
come riferimento la coppia a distanza infinita (vettore campo uguale a zero). Pertanto piu'
l'elettrone si avvicina al nucleo, piu' forte l'attrazione, minore (cioe' negativa) l'energia.
Energie negative non esistono: l'energia del campo e' negativa non in assoluto ma rispetto al
valore zero di riferimento, a distanza infinita. Nel caso degli orbitali di legame, il discorso e' lo
stesso: quanto piu' gli orbitali atomici usati per formare l'orbitale di legame sono interni e vicini
al nucleo, tanto maggiore il valore del vettore campo e tanto piu' negativa l'energia l'energia di
legame: ovvero tanto maggiore la quantità di energia che deve essere fornita dall'esterno per
rompere il legame.

Buonasera. Potrebbe illustrare come procedere per risolvere il quarto quesito? La ringrazio
No, non posso rispondere a questa domanda, per due ragioni. In primo
luogo perche' lo scopo dei quesiti e' testare la comprensione del testo che li precede;
quindi se non ha la risposta ad un quesito deve trovarla nel testo; se io la dessi in questa
sede lo scopo stesso di mettere i quesiti sarebbe vanificato; basterebbe leggere le mie
risposte anziche' il testo fornito. In secondo luogo le domande che voi mettete sul sito finiscono
tutte insieme, quindi non e' possibile sapere di quale lezione e argomento lei sta parlando.

Buonasera professore non ho capito bene la buca di potenziale
Abbiamo chiamato "buca di potenziale" il minimo locale dell'energia di
legame che si realizza quando due nuclei si trovano a distanza di legame. In questa condizione
si forma un orbitale di legame la cui energia potenziale e' inferiore (piu' stabile) rispetto a
quella degli orbitali atomici di partenza. Per una rappresentazione grafica puo' fare riferimento
alla figura 3 della lezione sul legame chimico.

Buonasera Professore riguardo la dissociazione di un acido debole mi chiedevo
da dove derivasse [OH-] quando eguagliamo le concentrazioni delle cariche. Grazie
Bellelli: come spiegato nel testo, una soluzione di qualunque soluto (quindi
anche di un acido debole) deve obbedire al requisito dell'elettroneutralità: cioè la somma delle
cariche negative deve uguagliare la somma delle cariche positive e la carica netta totale del
sistema deve essere zero. Le specie cariche negativamente sono due: A- e
OH-; la specie carica positivamente è una sola, H3O+;
pertanto: [A-] + [OH-] = [H3O+].

In questa frase presa dalla spiegazione dell'idrolisi acida intendeva dire esclude o include
Ki e come al solito include la concentrazione dell'acqua
Bellelli: La Ki include in sé la concentrazione dell'acqua, come si può facilmente vedere
se si scrive la legge di azione delle masse per la reazione di idrolisi. E' lo stesso che per la Ka o la Kb.

Buonasera prof non ho capito come si calcola in NO dei singoli atomi di carbonio in una molecola
Bellelli: devi scrivere la formula di struttura e considerare separatamente ciascun atomo
di carbonio; per ogni legame chimico devi assegnare gli elettroni di legamiall'atomo più elettronegativo e
calcolare la carica finale dell'atomo di carbonio. Ad esempio nel metano CH4, ci sono 4 legami C-H. Le
elettronegatività sono 2,5 per C e 2,1. Quindi gli elettroni di ciascun legame sono attribuiti tutti al C (più
eletronegativo). Ogni legame contiene 2 elettroni, uno del C e uno di H: quindi il C riceve i suoi 4 elettroni
(che non contano e i 4 dei 4 idrogeni: NO= -4. Ciascun idrogeno cede il suo elettrone e la sua carica risulta
NO=+1.


Prof. ma per i gruppi funzionali come calcoliamo l'elettronegatività?
Bellelli: l'elettronegatività è definita per i singoli atomi, non per i gruppi. E' possibile
misurare l'elettronegatività di un gruppo (ad es. -CCl3) ma non c'è un metodo di
"calcolo"; tut'al piu' ci sono tabelle un po' specialistiche per i gruppi piu' comuni.


Buonasera Professore avrei una domanda: esiste un metodo per capire se un acido o una base
sono forti o deboli direttamente dalla formula bruta?
Bellelli: dalla formula bruta no. Dalla formula di struttura, e conoscendo alcuni composti
simili si possono fare ragionevoli previsioni. In linea di massima un acido è tanto più forte
quanto più elettronegativo è l'atomo o il gruppo legato all'idrogeno che dissocia.
Ad esempio HCl è forte; HNO2 è debole ma se noi aggiungiamo un ossigeno
per fare HNO3 questo rende piu' elettronegativo il gruppo e HNO3
diventa forte; etc. Negli ossiacidi quanto più ossigeno è presente nel gruppo legato all'idrogeno
tanto più l'acido è forte (ad es. H2SO4 è più forte di H2SO3).

Buonasera lei dice sia in classe che sul sito che l'ossigeno non formi composti
con il fluoro. OF2 Fluoruro di ossigeno esiste solo in certo ambiente. Grazie
Bellelli: ha ragione. Sarebbe piu' corretto dire che non ci sono composti
naturali nei quali l'ossigeno e' legato col fluoro. In laboratorio noi abbiamo a disposizione
energie e condizioni sperimentali che ci consentono di sintetizzare composti non presenti in
natura, come OF2. OF2 e' un ossidante estremamente energico nel quale l'ossigeno ha numero
di ossidazione +2 e se fosse presente nell'ambiente reagirebbe immediatamente con
praticamente qualunque cosa per produrre composti nei quali l'ossigeno avrebbe n.o. -2.

Non ho capito perchè se l'elettrone genera un campo elettromagnetico per lo
spin dopo c'è scritto che il campo magnetico è nullo
Bellelli: dove ha trovato questa affermazione? Ad ogni modo presumo che
la frase dica che se in un atomo o molecola ci sono elettroni in coppie negli orbitali, essi hanno
spin opposto per il principio di Pauli e il campo magnetico risultante è nullo (+1/2 -1/2 = 0).
Se gli elettroni non sono in coppie con spin opposto il campo magnetico non e' nullo. In pratica:
bisogna sommare i numeri di spin di tutti gli elettroni dell'atomo o della molecola. Se il risultato
è zero il campo magnetico elettronico è nullo e l'atomo o la molecola è diamagnetico; se invece
il risultato è diverso da zero l'atomo o la molecola possiede suscettibilità paramagnetica.

Gentile professore non ho compreso la relazione tra l’aumentata intensità del
campo elettrostatico e la diminuita energia dell’orbitale di legame. la ringrazio.
Bellelli: l'energia in questo contesto è definita rispetto a quella di un nucleo
e un elettrone non interagenti, posti a distanza infinita. Se l'elettrone si avvicina al nucleo ed
entra in un orbitale, emette energia e scende ad un livello di energia più basso di quello di
riferimento, come una persona che scende lo scalino di una scala. L'energia dell'elettrone in un
orbitale (atommico o di legame) è quindi negativa rispetto al livello di riferimento, esattamente
come l'energia di una palla da golf caduta in una buca è negativa rispetto a quella della stessa
palla appoggiata sul suolo. E infatti per estrarre la palla dalla buca, o l'elettrone dall'orbitale
è necessario fornire energia.

Buongiorno professore volevo chiederle se poteva chiarirmi la differenza tra
carica e polarità… grazie mille
Bellelli: la carica elettrica è una grandezza fisica fondamentale come la
massa o l'energia. la polarità è una proprietà delle molecole che dipende da come sono
distribuite le cariche al loro interno. Se il centro delle cariche positive coincide col centro delle
cariche negative la molecola è non polare; se invece i due centri non coincidono la molecola è
polare e presenta una maggiore localizzazione di carica positiva ad una estremità ed una di
carica negativa all'estremità opposta.

Buongiorno professore. Come mai nell acido fosforico il fosforo riceve degli
elettroni dal quarto atomo di ossigeno nell'orbitale 3d e non 4s?
Bellelli: l'orbitale 4s ha una forma che non gli consente di formare un
orbitale di legame pi greco.

Salve professore, perché la risposta all’esercizio 1 è 24,4 e non 22,4?
Bellelli: controllerò l'esercizio. Il volume molare del gas perfetto si calcola
con la formula V = RT / P (e n=1 per definizione di volume molare). Alla pressione di 1 atm il
volume molare del gas perfetto (calcolato con la formula data prima, provare per credere)
risulta 22,4 L se T=273 K (0 C), e 24,4 L se T=298 K (25 C).

Buonasera professore parlando del composto B(OH)3 che significa che il legame O-H è
più polarizzato del legame B-O e in che modo questo influenza la dissociazione del composto?
Bellelli: i valori di elettronegatività dalla tavola periodica sono: H=2,1; B=2,04; O=3,5.
Nel tri-idrossido di boro, comunemente chiamato acido borico, il legame B-O e il legame O-H hanno
praticamente la stessa polarizzazione; però il boro è legato a tre ossigeni, ogni idrogeno ad un solo
ossigeno. Questo rende il boro più elettronegativo. Il risultato è che il composto in acqua dissocia uno ione
idrogeno anziché tre ioni idrossido.

Salve professore perché la risposta all’esercizio 1 è 24,4 e non 22,4?
Bellelli: ho già risposto sopra a questa domanda. Ma lei ha provato a fare il
calcolo? La formula è V = nRT / P. Prenda n=1, R=0,0821, T=273+25=298 K e P=1 atm e veda
quanto viene.

Buonasera professore Non ho ben capito come si calcola in maniera indiretta la volemia del sangue.
A cosa serve iniettare l'albumina?
Bellelli: per misurare la volemia si applica la formula V= n/C. Serve n, il
numero di molti di un tracciante, la sostanza iniettata dal medico che si distribuisca nel volume
del liquido da misurare. Può usare albumina marcato col cromo radioattivo (che nel nostro
sangue non c'è: c'è l'albumina non marcata) o un altro tracciante, ma qualcosa deve iniettare
nel sangue, che sia estranea ad esso e facilmente misurabile, in modo che n e C siano determinabili.

Buonasera professore non ho molto chiare le applicazioni della legge di Henry quando il gas reagisce con il liquido
Bellelli: se un gas reagisce col solvente si trova in soluzione in varie forme
e tra queste soltanto quella che ha la stessa formula della fase gassosa segue la legge di Henry.
Ad esempio la CO2 si scioglie in acqua e reagisce con l'acqua per formare acido carbonico e
bicarbonato; soltanto la CO2 disciolta è in equilibrio col gas secondo la legge di Henry, acido
carbonico e bicarbonato non seguono la legge di Henry.

Buonasera professore Non ho capito come mai se H reagenti < H prodotti i
legami presenti nelle molecole dei reagenti siano meno stabili (forti)
Bellelli: questa è una difficoltà comune quando si inizia lo studio della
termodinamica chimica. Lo stato più stabile di un sistema è quello che ha convertito la sua
energia potenziale in energia di legame. Ad esempio un sasso sospeso in aria ha energia
potenziale di tipo gravitazionale ed è in una condizione instabile. Quando cade converte la sua
energia potenziale prima in energia cinetica e poi al momento dell'urto con il suolo in calore,
e acquista una condizione stabile. Due atomi isolati e inizialmente tanto distanti che le forze
attrattive tra loro siano nulle possono avvicinarsi e formare un legame liberando energia sotto
forma di calore (cioè entalpia): questo significa che hanno raggiunto una condizione più
stabile (quella di molecola anziché di atomi isolati), perdendo una energia potenziale. Quindi
lo stato di molecola è più stabile di quello di atomi isolati perché la reazione di formazione del
legame è: 2 atomi --> molecola + calore (H). Per la legge di conservazione dell'energia
abbiamo: H molecola + calore di reazione = H atomi e la molecola è stabile perché
H molecola < H atomi. Generalizzando, se H prodotti < H reagenti la reazione sarà esotermica
e i prodotti saranno più stabili dei reagenti (a meno dei contributi entropici dei quali avremmo
dovuto tenere conto fin dall'inizio, utilizzando la funzione G anziché la H, con
Δ G = Δ H - T Δ S)

Mi scusi professore ma perché nel calcolo dell'entalpia nella reazione di formazione di H2O l'entalpia
è espressa su moli di O2?
Bellelli: l'entalpia deve sempre essere espressa in kcal/mole ed è quindi riferita alla
quantità di sostanza considerata; nella reazione di formazione dell'acqua la abbiamo espressa in
due modi: per mole di O2 consumato oppure per mole di acqua formata, e naturalmente il
primo valore è pari al doppio del secondo, perché il consumo di una mole di O2 porta alla
formazione di due moli di H2O

Buonasera professore vorrei chiedere perchè in riferimento alla costante di
equilibrio nel calcolo delle grammomoli non consideriamo i coefficienti stechiometrici?
Bellelli: non capisco questa domanda. Negli esercizi sul calcolo della
costante di equilibrio noi consideriamo i coefficienti stechiometrici quando calcoliamo le moli
di reagente consumate e le moli di prodotto formate. Provi a rifare questa domanda a lezione in
occasione di una delle nostre esercitazioni di stechiometria, così lo vediamo direttamente nel
calcolo.

Buonasera professore. Come si fanno a vedere le correzioni delle domande
alla fine di ogni "capitolo"? Riesco a vedere solo il punteggio. Grazie mille.
Bellelli: il programma non prevede di mostrare le risposte esatte alle 4
domande alla fine di ogni capitolo, perche' altrimenti lo scopo della verifica sarebbe vanificato:
anziché studiare il materiale fornito basterebbe premere invio, prendere nota delle risposte
esatte e ripetere la procedura, sempre senza leggere il materiale fornito.
A scopo di esercizi, vengono forniti per ogni capitolo degli "esercizi e quesiti" per i quali il
programma fornisce le risposte esatte e anche alcune spiegazioni.

Buonasera professore in merito all'equilibrio chimico in sistemi biologici il
termine costante di dissociazione è usato come sinonimo di costante di equilibrio?
Bellelli: si, l'esempio fornito è l'equilibrio della mioglobina con l'ossigeno e
la reazione, essendo reversibile, può essere scritta in entrambe le direzioni:
Mb + O2 <==> MbO2
oppure
MbO2 <==> Mb + O2
Le rispettive costanti di equilibrio sono l'una il reciproco dell'altra e vengono indicate
rispettivamente come costante di associazione (o di combinazione) e costante di dissociazione.
Nel trattamento algebrico del sistema viene usata la costante di dissociazione, per ragioni
spiegate nel testo.

Salve. Non ho ben compreso perché la sovrapposizione dei campi elettrostatici
comporta la minor energia dell'orbitale di legame rispetto a quelli atomici
Bellelli: Gli elettroni, che hanno carica negativa sono attratti dal nucleo, che
ha carica positiva. Il livello zero di attrazione si ha quando la distanza tra elettrone e nucleo è
infinita. Quando l'elettrone di trova a breve distanza dal nucleo (in un orbitale atomico) si trova
in una regione di minore energia rispetto al livello zero. Quando due nuclei si avvicinano e
sovrappongono e fondono i loro orbitali, il livello energetico dell'orbitale di legame e' ancora
minore (cioe' l'intensita' del campo elettrostatico positivo, che attira gli elettroni, è maggiore).
Prenda come esempio un sasso attratto dal campo gravitazionale della terra. A distanza infinita
l'attrazione è nulla; quello è il livello zero. Se il sasso cade sulla terra raggiunge una regione di
maggiore fora attrattiva e di minore energia potenziale (condizione dell'elettrone nell'orbitale
atomico). Se lei scava una buca e ci fa cadere dentro il sasso l'energia potenziale è ancora
minore (condizione dell'elettrone nell'orbitale di legame).

Buonasera professore. Il radicale libero Cl° con un elettrone spaiato nella
reazione CH4 + Cl2 si comporta da elettrofilo anche se ha sette elettroni sul livello elettronico
esterno?
Bellelli: non posso rispondere a questa domanda cosi' come e' posta
perché contiene vari errori, o forse sono io che capisco male.
Un composto o ione o atomo nucleofilo possiede almeno una coppia di elettroni non impegnata
in legami nello strato di valenza; tipicamente corrisponde ad una base di Lewis; un elettrofilo
ha uno strato elettronico esterno incompleto e può accettare legami dativi; tipicamente è un
acido di Lewis. Un radicale è caratterizzato da almeno un elettrone spaiato nello strato di
valenza (non una coppia in un orbitale!), quindi ad un radicale la definizione di nucleofilo o
elettrofilo si adatta malamente.
La reazione CH4 + Cl2 non è descritta tra gli esempi proposti; il suo prodotto è CH2Cl-CH2Cl
e non avviene con meccanismo radicalico; il Cl2 attacca l'orbitale pi greco del doppio legame.
La reazione descritta tra gli esempi è la molto piu' classica C2H4 + HCl --> C2H5Cl. Questa
avviene con meccanismo di addizione elettrofila perché l'H+ è un elettrofilo e attacca il doppio
legame.
Il meccanismo radicalico, più difficile da innescare, è quello della reazione
C2H6 + Cl2 -> C2H5Cl + HCl
Per ottenere questa reazione bisogna prima produrre in qualche modo il radicale che può essere
C2H5° oppure Cl°. Il radicale sposta su di se uno degli elettroni di un orbitale sigma e genera
il prodotto e un nuovo radicale che va a fare una nuova reazione (meccanismo a catena).

Salve professore. Non ho ben compreso il concetto di fase termodinamica
Bellelli: la fase è una porzione del sistema termodinamico considerato nella
quale tutte le molecole appartengono ad un unico corpo; dal punto di vista chimico le molecole
possono essere uguali o diverse tra loro. Ad esempio un gas puro costituisce un'unica fase e
anche una miscela gassosa costituisce un'unica fase (ogni molecola è libera di incontrare tutte
le altre). Due liquidi immiscibili o due solidi costituiscono fasi distinte, perché le molecole del
primo corpo non possono incontrare quelle del secondo corpo.

Salve professore. Non ho ben compreso la differenza tra n diss = n e nparticelle diss = n = n ν α
Bellelli: Non sono sicuro di aver capito la domanda. Supponga di avere due
mandarini in un piatto e di chiedersi quanti corpi sono presenti nel piatto. Evidentemente fin qui
la risposta e' n_totale=2 e n_corpi=2.
Ora prenda un mandarino e lo dissoci nei suoi spicchi; supponiamo che gli spicchi siano 8. Alla
domanda su quanti corpi sono presenti nel piatto risponderemo: n_totale=2 (i mandarini sono
sempre 2); n_corpi=9 (somma di 1 mandarino indissociato e uno dissociato in v = 8 spicchi.
La formula generale per rispondere risulta quindi:
n_corpi=n_indissociati + (n_dissociati x v)
n_indissociati = n_totale x a (nel nostro esempio: n_totali=2 a=0,5)
n_dissociati x v = n_totale x a x v (nel nostro esempio: 2 x 0,5 x 8)

Perché la N-acetil glucosammina viene considerata un'ammina e non
un'ammide secondaria anche se deriva da un'ammina primaria e un acido carbossilico?
Bellelli: formalmente il gruppo funzionale è dato dal legame amidico; però
dal punto di vista della biochimica prima viene formata la glucosamina e successivamente
questa viene acetilata. Quindi il nome del composto descrive una glucosamina modificata.

Buonasera Professore. Perché avviene l'effetto induttivo del sostituente
sull'aromaticità dell'anello benzenico? Mi riferisco ai gruppi attivanti e disattivanti.
Bellelli: questa domanda riguarda i meccanismi di reazione e più
precisamente la facilitazione indotta dai sostituenti dell'anello aromatico nei confronti delle
reazioni di sostituzione. Riguarda quindi un argomento che noi non trattiamo in modo
approfondito nel nostro programma. In sostanza se un sostituente è capace di "donare"
elettroni all'anello pi greco delocalizzato (ad es. un gruppo OH come nel fenolo o addirittura O-
nello ione fenato) questo si comporta come un attivante e facilita le reazioni di sostituzione, a
discapito di quelle di addizione; per contro un gruppo che attrae elettroni tende a favorire ibridi
di risonanza parzialmente non aromatici e facilita le reazioni di addizione. Però io le consiglio
fortemente, se questo è il suo interesse, di fare riferimento a un testo di Chimica Organica più
approfondito di quelli da noi adottati in questo corso, magari ricorrendo ad una biblioteca
specializzata.

Salve professore non ho capito da quali calcoli deriva il valore di ΔH=300 Kcal
mole nella reazione di combustione del glucosio.
Bellelli: premesso che il ΔH di combustione del glucosio è -670 kcal/mole,
il ragionamento è spiegato dettagliatamente nella lezione sulle reazioni chimiche, che le
consiglio di rileggere. In sostanza se il calore molare di formazione del glucosio a partire da C,
H2 e O2 (dalle tabelle) è di -300 kcal/mole, mentre quelli di
H2O e CO2 sono rispettivamente -58 e -94 kcal/mole la reazione
di combustione del glucosio presenterà un ΔH pari alla somma algebrica dei valori di
H0 del glucosio (cambiato di segno perché è il reagente) più quelli dei prodotti,
ciascuno moltiplicato per il suo coefficiente stechiometrico: -(-300) + 6x(-58) + 6x(-94) = -670 kcal/mole.

Buonasera Professore. è possibile che la formula di struttura del fruttosio
secondo Haworth sul sito sia errata? Cercando su internet sembra differente. Grazie
Bellelli: tutti possiamo sbagliare, ma quella formula mi sembra corretta.
Tenga presente che la rappresentazione data sul sito pone il C2 a sinistra, invece che a destra
come viene piu' comunemente fatto. Se una formula di Haworth viene girata, le posizioni di
tutti i sostituenti chirali vanno invertite (gli OH che stavano sopra vanno sotto e viceversa). La
ragione per invertire l'orientamento di una formula e' quella di semplificare la rappresentazione
di alcuni possibili composti; ad esempio in genere si rappresenta in questo modo il fruttosio del
saccarosio. Provi a confrontare la formula data sul sito con quella del fruttosio nel saccarosio.

Buonasera professore, la formazione del solido cristallino è un processo
endoergonico. può esserlo in casi particolari
Bellelli: la sua domanda è incompleta, pertanto non è possibile dare una
risposta univoca. Qual è il processo che lei immagina? Cioè le parla di formazione del solido
cristallino a partire da cosa? Il solido cristallino è uno stato, non un processo. Ad esempio un
processo potrebbe essere la formazione del solido cristallino a partire dalla soluzione
sovrasatura di un sale. A seconda del sale che lei considera il processo può essere sia
endoergonico che esoergonico e lei se ne accorge dalla variazione della solubilità del sale in
funzione della temperatura. Nella maggioranza dei casi la solubilità dei sali aumenta
all'aumentare della temperatura, e questo rivela che la dissoluzione del solido è endoergonica
(quindi la formazione del solido è esoergonica). In alcuni casi però la solubilità del sale
diminuisce all'aumentare della temperatura, ad esempio per il solfato di calcio; questo ci rivela
che la dissoluzione del solido è esoergonica (quindi la formazione del solido è esoergonica).

Salve professore mi può spiegare il ruolo della tensione di vapore a livello
alveolare? può anche mettere un link se preferisce.
Bellelli: a 37°C la tensione di vapore saturo dell'acqua e' 44 mmHg. L'aria
che noi respiriamo ha un contenuto di vapore d'acqua molto inferiore: perché non è satura e
perché in genere si trova ad una temperatura inferiore (a 25°C la tensione di vapore saturo
dell'acqua è 18 mmHg). Le vie respiratorie devono fornire acqua e che evapora e satura di
vapore acqueo l'aria inspirata. Questo comporta che con l'espirazione noi perdiamo acqua (circa
300 mL/die; cosiddetta perspiratio insensibilis). Poiché l'alveolo polmonare è rivestito da un
sottilissimo film di liquido, si comporta come una bollicina e risente della tensione superficiale
dell'aqua che tenderebbe a farlo restringere. Questo effetto è minimizzato dalla presenza di
secreti tensioattivi (surfactanti).

Come faccio a sapere qual è la possibile ibridazione per l’atomo di carbonio?
Bellelli: il carbonio tende allo stato di massima ibridizzazione possibile, però
mentre l'orbitale di legame sigma può essere formato da qualsiasi orbitale atomico, l'orbitale pi
greco puo' essere formato soltanto da orbitali atomici p non ibridizzati. Quindi lei deve guardare
il suo atomo di carbonio e contare quanti orbitali pi greco forma. Se possiede soltanto legami
semplici (ad es. il metano) forma soltanto orbitali di legame di tipo sigma e la sua ibridazione è
la più alta possibile, cioè sp3. Se forma un solo legame doppio (ad es. la
formaldeide) ha tre orbitali sigma e un orbitale pi greco, derivante da un orbitale atomico p non
ibridizzato; quindi la sua ibridazione è sp2. Se forma due legami doppi (ad es.
l'anidride carbonica) o un legame triplo (ad es. l'etino) ha due orbitali sigma e due orbitali pi
greco, derivanti da due orbitali atomici p non ibridizzati; quindi la sua ibridazione è sp.

Salve professore mi può spiegare cosa avviene dopo il punto di equivalenza durante le titolazioni?
Bellelli: quando viene superato il punto di equivalenza in una titolazione
il segnale osservato è dato dall'eccesso di titolante libero. Ad esempio in una titolazione di
acido acetico con NaOH, al punto di equivalente è presente soltanto CH3COONa
e il pH (che in questa titolazione è il segnale) è dato dall'idrolisi del sale. Se viene aggiunta
ulteriore NaOH ci sarà in soluzione un eccesso di base forte non tamponata che determinerà
il pH (secondo la regola [OH-] = Cb); il contributo del CH3COONa
al pH sarà trascurabile.

Mi scusi professore la frazione molare della soluzione glucosata al 5 p/v non
riesco a capire cosa sono gli altri 95 siccome non scritto nella domanda.
Bellelli: la glucosata è una soluzione acquosa contenente il 5% di glucosio
espresso come rapporto peso/volume (p/v). Quindi questa soluzione contiene 5 g di glucosio
in 100 mL di volume totale. Il rimanente "95" è acqua però non è corretto in un rapporto peso
volume utilizzare la sottrazione. Conoscendo la densità lei potrebbe convertire la percentuale
peso/volume in una percentuale peso/peso, per la quale la sottrazione sarebbe applicabile.
Ad esempio se la densità fosse esattamente 1 g/mL, 100 mL peserebbero 100 g e la soluzione
sarebbe composta da 5 g di glucosio e 95 g di acqua. Questi concetti sono spiegati nella lezione
sulle soluzioni.

Buonasera prof. ha un consiglio sul modo migliore per studiare le formule per l'esame?
Sto avendo difficoltà a memorizzarle.
Bellelli: ovviamente ci vuole molto esercizio. Provi a scrivere le formule di
struttura nel modo più esplicito possibile indicando ogni atomo e ogni legame; eviti, almeno
inizialmente, quelle rappresentazioni nelle quali gli atomi sono sottintesi (linee spezzate, etc.).
Controlli che i legami che attribuisce agli atomi siano consistenti con la loro capacità di formare
legami: il C deve sempre fare 4 legami, O 2 legami, etc. In caso di dubbio provi a scrivere la
rappresentazione di Lewis, nella quale ogni elettrone dello strato esterno è rappresentato con
un puntino; ogni legame deve avere due elettroni.

Come faccio a sapere qual è la possibile ibridazione per l’atomo di carbonio?
Bellelli: la risposta a questa domanda sta nella
lezione sulla Chimica Organica
dove lei trova un paragrafo intitolato: "RICONOSCERE L'IBRIDAZIONE DEL CARBONIO (E DI
QUALUNQUE ALTRO ATOMO)." Sarebbe un errore didattico da parte mia ripetere in questa sede
le spiegazioni gia' date, meglio, sul materiale didattico fornito. Se quella parte non le risulta
chiara mi formuli una nuova domanda, più precisa.

Buonasera professore e' corretto dire che un ambiente acido e' tendenzialmente un ambiente ossidante?
Bellelli: lei fa una strana domanda, che richiede una risposta complicata.
Diciamo che, in prima approssimazione, che non c'è ovvia relazione tra un ambiente acido e un
ambiente ossidante: acido vuol dire ad elevata concentrazione di ione idrogeno, ossidante vuol
dire che ha una elevata concentrazione di un agente ossidante.
Saliamo ora un gradino nel dettaglio della nostra analisi: lo ione idrogeno è la specie ossidata
della coppia H2/H+; quindi un ambiente acido risulta ossidante nei
confronti di qualunque specie chimica che abbia un potenziale standard negativo. Ad esempio
se noi aggiungiamo zinco metallico ad una soluzione di un acido forte osserviamo la reazione:
Zn0 + 2 H+ --> Zn+2 + H2

In questa reazione lo ione idrogeno è l'ossidante e si riduce a idrogeno gassoso, mentre lo zinco
metallico è il riducente (E0 = -0,76 V) e si ossida a ione zinco. Dunque, in
presenza di un riducente sufficientemente energico una soluzione acida risulta ossidante, e
quanto più è acida (cioè quanto più basso è il suo pH) tanto più è ossidante.
Saliamo ora un altro gradino nel dettaglio della nostra analisi: l'atmosfera contiene ossigeno che
è un ossidante molto energico, e l'ossigeno si discioglie in acqua seguendo la legge di Henry;
quindi, a meno di non preparare le nostre soluzioni in una atmosfera di un gas inerte (ad es.
azoto o argon), tutte le nostre soluzioni e anche l'acqua pura si comporteranno come ossidanti,
a causa dell'ossigeno in esse contenuto.
In una soluzione acida, lo ione idrogeno (o anche il suo controione; ad esempio Cl-) può
avere un effetto catalitico sulle reazioni di ossidazione dovute all'ossigeno disciolto, oppure può
partecipare in altro modo alla reazione stessa; ad esempio la semireazione di riduzione dello
ione cromato:
CrO4-2 + 8 H+ + 6 e- --> Cr+3 + 4 H2O

richiede ione idrogeno come reagente; in questa reazione lo ione idrogeno non si comporta
né da ossidante né da riducente (il suo numero di ossidazione rimane invariato), ma è richiesto
dalla stechiometria di reazione e appare nell'equazione di Nernst. Chiaramente la semireazione
è favorita (qualunque sia la specie riducente utilizzata come donatore di elettroni) in ambiente
acido, per il principio di Le Chatelier, però è una semireazione di riduzione: questo
vuol dire che in questo caso l'ambiente acido favorisce una riduzione, anziché una ossidazione!

Non ho capito la frase: il prodotto tra le incertezze delle misure di posizione
e velocità non può essere inferiore ad una funzione della costante di Plank
Bellelli: le grandezze velocità e posizione sono tra loro complementari;
ovvero devono essere determinate insieme: non possiamo conoscere la velocità di una
particella se non sappiamo dove si trova. Quando due grandezze sono complementari, anche
l'incertezza della loro misura risulta correlata: cioè l'inevitabile errore di misura non è su
ciascuna ma sulla coppia (principio della complementarità di Bohr). Questo implica che se una
delle due in un esperimento è misurata con grande precisione, l'altra sarà imprecisa. Non si può
risolvere questo problema con strumenti più precisi perché al livello degli oggetti quantistici
tutte le grandezze sono anche quantistiche e l'incertezza sul prodotto quantità di moto x posizione
non può essere inferiore alla metà della costante di Plank ridotta che è appunto una misura
della discontinuità degli oggetti quantistici.

Buonasera Professore non ho ben capito la diapositiva sulla spettroscopia di
assorbimento come funziona il come leggere il grafico sotto
Bellelli: una domanda di questo tipo, che richiede la discussione di un
grafico va fatta in classe; me la proponga alla prossima lezione.

Buonasera professore, potrebbe spiegarmi brevemente la sovrapposizione
degli orbitali ibridi S e P? Grazie.
Bellelli: questa domanda è già stata posta su questo sito; se scorre lo
storico verso l'alto trova domanda e risposta.

Buonasera professore. Qual è la differenza tra forze di London e forze di Van der Waals?
Bellelli: di solito si intende per forse di Van der Waals l'insieme di tutti i tipi di interazioni deboli e per forze di London le interazio
ni deboli non elettrostatiche (quindi con l'esclusione delle interazioni dipolo-dipolo, ione-dipolo e legame idrogeno.

buonasera professore volevo chiederle se per caso fosse possibile spiegare il
procedimento della prima domanda del capitolo sulle soluzioni, quella della frazione molare.
Bellelli: la domanda chiede di convertire una molarita' in una frazione molare.
Prendendo 1 L di soluzione, il numero di moli del soluto è uguale alla sua molarità. Il numero di
moli del solvente è dato dal peso del solvente diviso per il suo peso molecolare. Il peso del
solvente è dato da: [volume (1 L) x densità - peso del soluto].
La frazione molare del soluto è X = moli soluto / (moli soluto + moli solvente).

Buongiorno prof. come mai composti come il pirano o il tetraidrofurano sono
considerati alifatici pur avendo una catena chiusa?
Bellelli: perche' un composto sia aromatico non basta che sia ciclico: deve
avere doppi legami e orbitali pi greco delocalizzati; inoltre la regola di Huckel richiede che gli
elettroni negli orbitali pi greco siano 4n+2 dove n e' il numero degli anelli presenti nel
composto. Ad esempio non sono aromatici ne' il cicloesano (che e' ciclico ma non ha doppi
legami), ne' il cicloesene (ciclico con un solo doppio legame), ne' il cicloesadiene (ciclico con
due doppi legami), mentre e' aromatico il benzene (=cicloesatriene, con un solo anello a sei
atomi, tre doppi legami e 6 elettroni negli orbitali pi greco)

Buonasera prof. Perche' nel calcolo dell'entalpia rusulta H = Q = 116
kcal/moleO2 e non 16 kcal/moleH2O
Bellelli: perche' in quell'esempio sono state calcolate le energie di legame
per la reazione di una molecola di ossigeno (116 kcal/moleO2), che forma due molecole di
acqua; quindi abbiamo ottenuto kcal per mole di ossigeno o kcal per due moli di H2O.

Buongiorno prof mi può spiegare per quale motivo si ha Ca = [HA]?
Bellelli: non viene indicato il tipo di soluzione alla quale lei si riferisce. In
una soluzione di acido debole si ha Ca = [HA] + [A-] (questa è la legge di conservazione delle
masse). Se l'acido è debole e Ca è grande rispetto alla Ka (ad es. Ca = 0,1 M; Ka = 10-5 M)
allora avremo che [HA] >> [A-], e nella somma [HA]+[A-] è lecito trascurare il contributo di
[A-]; pertanto [HA] = Ca. In un tampone il ragionamento è lo stesso ma in questo caso
abbiamo il componente [A-] derivante dalla dissociazione del sale; pertanto dobbiamo
approssimare [HA]=Ca e [A-]=Cs.

Buongiorno prof perché la reazione A+B -> AB -> C è bimolecolare anche da AB a C?
Bellelli: la reazione indicata nello schema è composta da due processi
successivi: A+B -> AB bimolecolare e (presumibilmente) di secondo ordine; e AB -> C
monomolecolare e (presumibilmente) di primo ordine. Dove ha trovato che AB -> C è
bimolecolare?

Buonasera professore. Per quali valori di Ka posso considerare un acido forte
o debole? Esiste un valore che funge da spartiacque tra le due categorie?
Bellelli: non esiste un vero valore di soglia. In termini approssimativi l'acido
forte non ha una Ka perché dissocia interamente e ad equilibrio la forma indissociata non è più
presente. Se lei vuole un discorso più preciso, nessuna reazione è veramente irreversibile e
anche un acido forte ha una Ka che però è maggiore delle concentrazioni di acido praticamente
utilizzabili. Deve considerare che per la legge di Ostwald, se lei discioglie in acqua un acido ad
una concentrazione pari al doppio della sua Ka, ottiene un grado di dissociazione pari a 0,5; per
ottenere un grado di dissociazione del 90% deve usare una concentrazione pari a 1/8 della Ka.
Se noi accettiamo l'approssimazione che un acido è interamente dissociato, quindi forte, se il
suo grado di dissociazione alfa uguaglia o supera il 90%, allora un acido forte ha una Ka che è
pari o superiore a 8 volte la concentrazione massima che lei intende utilizzare. Ad esempio se la
concentrazione massima che lei può disciogliere è 1 M un acido forte deve avere Ka = 8 M.

Buonasera professore, mi può rispiegare come faccio ad approssimare
[HCOOH] = Ca e [HCOO-] = Cs nella soluzione tampone?
Bellelli: prendiamo il tampone costituito da HCOOH e HCOONa. Per la legge
di conservazione della carica abbiamo: [H3O+] + [Na+] = [OH-] + [HCOO-] (la somma delle
cariche negative uguaglia la somma delle cariche positive). Siccome [H3O+] e [OH-] sono
entrambi piccoli rispetto a [Na+] e [HCOO-] possiamo approssimare [Na+] = [HCOO-]; ma noi
sappiamo che [Na+]=Cs per cui [HCOO-]=Cs. Per la legge di conservazione della massa noi
sappiamo che Ca+Cs=[HCOOH]+[HCOO-]; ma noi abbiamo già approssimato [HCOO-]=Cs,
quindi l'equazione precedente si risolve in Ca=[HCOOH].

buonasera professore; perché qualunque tipo di misurazione di un elettrone è
sufficiente affinché questo ci appaia come particella?
Bellelli: non sono sicuro di aver capito bene la domanda. L'elettrone ci può
apparire come particella o come onda a seconda del tipo di misurazione che noi facciamo;
quindi non è vero che qualunque tipo di misurazione ci farà apparire l'elettrone come particella.
L'elettrone gode della proprietà della molteplicità di stato, cioè è sia onda che particella; oppure
forse dovremmo dire che alle dimensioni dell'elettrone onda e particella non sono due cose
così distinte come ci appaiono nel mondo macroscopico. A seconda dell'esperimento che
facciamo riveliamo proprietà caratteristiche dell'onda o della particella.

Salve professore, non ho ben capito la differenza tra potenziale elettrostatico e potenziale elettrochimico.
Bellelli: il potenziale elettrochimico e' dato dalle tendenza di un atomo, ione
o composto a cedere o acquistare elettroni e corrisponde al potenziale redox standard della
semireazione considerata (per intenderci quello che trova nella tabella dei potenziali redox). Il
potenziale elettrostatico e' invece dato dall'accumulo di carica: il fusso di elettroni in una pila
rende una semicella positiva e una negativa, generando nell'una un eccesso di ioni positivi,
nell'altra un eccesso di ioni negativi.

In che modo la seconda dissociazione del fosfato avendo pKa = 7,2 svolge il ruolo di tampone nel sangue?
Bellelli: La seconda dissociazione del fosfato e':
H2PO4- + H2O <=> HPO4-2 + H3O+.
In questa reazione il composto H2PO4- si comporta come un acido mentre il composto HPO4-2
e' la sua base coniugata; i due costituiscono quindi un tampone.

Salve Non mi e' ben chiaro questo passaggio: quando il gas e' presente in
soluzione in varie forme, la legge di Henry applica soltanto alla forma che
e' uguale negli stati si soluto e gassoso.
Bellelli: se lei considera un gas come l'ossigeno, questo ha la formula
O2 sia in fase gassosa che in soluzione e rispetta sempre la legge di Henry.
Se lei invece considera un gas come la CO2, questa ha la formula
CO2 nella fase gassosa, mentre in soluzione acquosa reagisce con l'acqua
secondo le reazioni:
CO2 + H2O <=> H2CO3 <=> HCO3- + H3O+
l'equilibrio tra la fase gassosa e quella di soluzione e' possibile soltanto per la specie
CO2, mentre le specie H2CO3 e HCO3- non possono passare nella fase gassosa.

Buonasera professore non ho ben chiaro cosa rappresenta il termine Eo nell'equazione di Nernst
Bellelli: il termine Eo nell'equazione di Nernst per il potenziale di semicella
rappresenta il potenziale redox standard della coppia redox presente nella semicella, e si trova
sulla tabella dei potenziali redox.

Buonasera, perchè il secondo S nello ione iposolfito ha n.o. -2 e non -1 che è l'elettrone che prende dallo S centrale ossia come fa a compor
tarsi come un ?
Bellelli: l'iposolfito, il cui nome e' stato cambiato in tiosolfato, ha la stessa
struttura elettronica del solfato, e i due atomi di zolfo hanno numeri di ossidazione diversi;
quello al centro ha no=+6, come nel solfato; quello esterno occupa una posizione e un ruolo
analogo a quello di uno degli ossigeni del solfato ed ha lo stesso numero di ossidazione di quelli,
cioe' -2.

Salve professore, visto che nello spazio la pressione e uguale a zero, la
temperatura allora non dovrebbe essere uguale a 0 gradi Kelvin?
Bellelli: questa domanda verte verso la filosofia. Il calore e' una forma di
energia posseduta dai corpi; quindi in senso stretto il vuoto non possiede veramente ne' calore
ne' temperatura, e non e' in grado di scambiare calore con altri corpi, anche se pue' essere
attraversato da radiazione infrarossa e microonde, che veicolano calore. Infatti un termos, che
può mantenere la temperatura del suo contenuto, e' fatto da un sottile involucro chiuso in vetro
al cui interno e' stato fatto il vuoto. Pero' proprio perche' il vuoto non puo' contenere calore, e'
formalmente corretto (ma poco sensato) dire che la sua temperatura e' 0 K.

Salve, nel sito dice che il fumarato rientra nel mitocondrio diventando
ossalacetato. Il libro dice che non ci sono carrier per l'ossalacetato. Come rientra allora il
fumarato?
Bellelli: il libro ha ragione. Nel citoplasma della cellula ci sono enzimi che
convertono fumarato in ossalacetato, ed è quest'ultimo ad essere trasportato nel mitocondrio.
Gli enzimi citoplasmatici catalizzano reazioni formalmente identiche a quelle mitocondriali ma
sono proteine diverse, codificati da geni diversi.

Buongiorno. Non capisco perché nel tampone bicarbonato anidride carbonica
la CO2 è pari alla concentrazione di acido e lo ione bicarbonato è pari a quella del sale
Bellelli: questo è spiegato nella lezione sui tamponi del sangue. In breve il
sale del tampone è il bicarbonato di sodio presente nel plasma. L'acido dovrebbe essere l'acido
carbonico (H2CO3) che però è presente in piccolissima quantità ed è in equilibrio con la CO2,
a causa della reazione CO2 + H2O <=> H2CO3; quindi si considera quest'ultima come acido.

Salve Professore, non capisco come una delle due CO2 prodotte dal ciclo di
Krebs derivi dall'acetilCoA; non derivano dall'ossalacetato entrambe?
Bellelli: una delle CO2 viene dall'acetile, l'altra dall'ossalato, ma questo non
si puo' facilmente spiegare a parole. Modifico la figura del ciclo di Krebs, vada a vederla sul sito.

Buonasera professore nella dimostrazione dell'idrolisi salina acida non mi riesce a tornare che H3O+
e' uguale a radice di Ki x Cs.
Bellelli: la reazione (ad esempio) di NH4Cl è: NH4Cl --> NH4+ + Cl- ; e poi
NH4+ + H2O <==> NH3 + H3O+. Scriviamo la legge di azione delle masse per la seconda (la
prima e' irreversibile) e otteniamo: Ki = [NH3] [H3O+] / [NH4+].
Approssimiamo [H3O+] = [NH3] (si formano nella stessa reazione) e [NH4+] = Cs (la reazione
ha un basso grado di dissociazione); otteniamo: Ki = [H3O+]^2 / Cs, da cui [H3O+] = radice Ki x Cs.

Buongiorno professore. In una pila a concentrazione perché nella cella a
concentrazione maggiore avviene la riduzione e non l'ossidazione?
Bellelli: la regola che lei enuncia non esiste. L'ossidazione avviene nella
semicella il cui potenziale è minore (piu' negativo o meno positivo) e la riduzione in quella in cui
il potenziale e' maggiore (piu' positivo o meno negativo).
Quindi per sapere dove avviene l'ossidazione e dove la riduzione occorre applicare l'equazione
di Nernst alle due semicelle e vedere quale delle due ha il potenziale minore.
Se la pila a concentrazione è fatta ad esempio con due semicelle a zinco l'equazione di Nernst
ci dice che la semicella con la maggiore concentrazione di ione Zn++ è quella che ha il
potenziale maggiore e quindi è quella in cui avviene la riduzione. Se invece facciamo una pila a
concentrazione di Cl2 / Cl- l'equazione di Nernst ci dice che la cella in cui è maggiore la
concentrazione dello ione Cl- è quella che ha il potenziale minore e quindi è quella in cui
avviene l'ossidazione. Provi a immaginare qualche pila a concentrazione e a scrivere le
equazioni di Nernst delle due semicelle per verificare.

Perchè il benzene nucleofilo si combina con il gruppo OH dando sostituzione
elettrofila? E perchè se si aggiunge il NH2 risulta meno basico di un'ammina (alifatica)?
Bellelli: questa domanda è molto confusa. I termini elettrofilo e nucleofilo si
applicano ai meccanismi delle reazioni organiche; quando lei dice che il benzene si combina col
gruppo OH a quale reazione sta pensando? La sintesi chimica del fenolo di norma non si fa a
partire dal benzene; la si fa a partire dall'acido benzensulfonico o da un alogenuro del benzene
come il clorobenzene. L'amina del benzene (anilina) e in generale tutte le amine aromatiche
sono meno basiche (hanno Kb più basse) delle corrispondenti amine alifatiche perché il
doppietto elettronico dell'azoto è parzialmente coinvolto nel sistema aromatico delocalizzato.

Buonasera professore volevo comunicarle che nell'autovalutazione n.3 c'è
un errore. Nell'es.7: il cloruro di ammonio dà luogo a idrolisi acida.
Bellelli: grazie, controllo subito e provvedo a correggere.

Buonasera professore non ho capito bene come calcolare la densità dell'aria alla temperatura di 298K e alla pressione di 1 atm
Bellelli: possiamo ragionare in vari modi. Io le suggerisco il seguente:
prendiamo un numero di Avogadro di molecole (una mole totale). Le frazioni molari sono:
O2=21%; N2=79%. Dunque il peso di una mole di aria risulta: 32x0,21 + 28x0,79 = 28,8 g.
Il volume molare di un gas perfetto a 1 atm, 298 K è 24,4 L; quindi la densità dell'aria risulta
28,8 g / 24,4 L = 1,18 g/L.

Nella spiegazione dell'isomeria per gli alcani menziona 3 tipi: costituzione,
posizione, conformazione. Non capisco la differenza tra i primi due.
Bellelli: lei ha studiato male e deve rivedere quella lezione perché le
isomerie nel caso degli alcani sono semplicemente elencate, mentre sono spiegate in dettaglio
più avanti nella stessa lezione, con tutti gli esempi necessari. Per l'isomeria di costituzione
l'esempio proposto è quello della coppia butano-isobutano; per l'isomeria di posizione l'esempio
proposto è quello della coppia 2metilpentano-3metilpentano (che sono entrambi alcani). Studi
bene la lezione fino in fondo e provi a riscrivere le formule degli esempi proposti. Se poi non è
chiaro mi faccia una domanda più precisa.



      Torna a: Home page del corso; didattica; pagina iniziale.