
  



  

In 2008 we solved the structure of Thioredoxin Glutathione 
Reductase from the human parasite Schistosoma mansoni. This 
enzyme, nicknamed SmTGR, is a validated drug target and several 
inhibitors are known; one of them, Auranofin, is already in use (for 
other diseases).

In 2009 we solved the structure of SmTGR in complex with 
gold, released by Auranofin, and demonstrated that the metal ion is 
the actual irreversible inhibitor, while the drug only acts as a gold 
carrier. In 2010 we solved the structures of all the putative 
intermediates of the catalytic cycle of SmTGR.
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SmTGR is very similar to a Thioredoxin Reductase, except 
that the polypeptide sequence includes a N-terminal domain 
structurally homologous to a Glutaredoxin.

The enzyme is a homodimer; each monomer includes a 
Glutaredoxin domain, a NADPH binding domain, a FAD containing 
domain, and a C-terminal arm, responsible for shuttling electrons 
to its substrates. The FAD containing domain hosts a Cys-Cys 
couple, which is reduced by the FADH2. A Sec-Cys couple is 
hosted on the C-terminal arm, receives electrons from the former 
and donates them to the substrate. The electron flow may be 
schematized as follows:

NADPH → M1FAD → M1Cys2 → M2Sec-Cys → Trx or Grx domain

M1 and M2 denote the first or second monomer of the dimer 
and the enzyme presents a case of monomer swapping, in which 
the Cys couple on the FAD is used to reduce the Sec-Cys couple 
on the C-terminal arm of the partner subunit.



  

As is typical of Cys- or Sec- containing enzymes, SmTGR 
has several covalent inhibitors reacting with these residues. These 
include alkylating agents and metals capable of forming a covalent 
complex with S or Se.



  

Non-covalent, reversible, inhibitors of SmTGR (and TrxR in 
general) are less common, but many covalent inhibitors initially 
behave as reversible competitive inhibitors of the oxidizing 
substrate (Trx) and only slowly become irreversibly bound.

In 2011 we wrote a review on the macromolecular targets of 
antischistosomal therapy, where we reviewed some known 
inhibitors of TrxR and TGR, and we were surprised by the number 
of inconsistencies and “strange” results. 

Two common occurrencies are as follows:
i) two KI values are assigned to the same inhibitor, on emeasured 
at constant [NADPH] and variable [Trx], the other measured in the 
opposite way round;
ii) the same inhibitor is assigned a finite KI value and then is 
declared to be irreversible.

Selected reference: Angelucci et al. (2011) Macromolecular bases of 
antischistosomal therapy. Curr. Top. Med. Chem., 11, 2012-2028. 



  

We decided to investigate the most obvious discrepancies 
and, if possible to solve them. Our first step was to develop the 
simplest chemical model capable of explaining the enzyme's 
behaviour.
 In the case of an oxido-reductase, such a model entails a 
reductive and an oxidative half cycle, each configured as a 
Michaelis-like model:

  TRox + NADPH <==> TRoxNADPH --> TRred + NADP+   (eq.1)
  TRred + Trxox <==> TRredTrxox --> TRox + Trxred                       (eq.2)

We define:

   KN = [TRox] [NADPH] / [TroxNADPH]
   KS = [TRred] [Trxox] / [TrredTrxox]

Since our objective is to derive the simplest possible model we 
assume the pseudo-equilibrium approximation, i.e. we assume that 
 the enzyme-substrate complexes form and decay rapidly with 
respect to the chemical reaction they catalyze.



  

Under steady state conditions the rates of oxidation and 
reduction are equal, i.e.:
 kred [TRoxNADPH] = kox [TrredTrxox]

The equations defined above allow us to express all the 
intermediates of the catalytic cycle as the product of one of them, 
chosen as the “reference” species, with the constants and the 
concentrations of substrates:

Trox = reference species

[TRoxNADPH] = [TRox] N / KN

[TRredTrxox] = [TRoxNADPH] kred / kox  = [TRox] (N / KN) (kred / kox)

[TRred] = [TRredTrxox] KS / [Trxox] = [TRox] (N / KN) (kred / kox) (KS / S)

where N stands for [NADPH] and S for [Trxox].



  

From the above equation we construct the binding 
polynomial of TR, i.e. the sum of all species of the enzyme 
espressed as a function of the concentration of the reference 
species: 

[TR] = [TRox] (KNkoxS + NkoxS + NkredS + NkredKS) / KnkoxS

It is important to keep track of the meaning of each term: 

[TRox] KNkoxS / KNkoxS = [TRox] is the concentration of the 
reference species; 

[TRox] NkoxS / KNkoxS is the concentration of species TRoxNADPH; 

[TRox] NkredS / KNkoxS is the concentration of species TRredTrxox; 
 
[TRox] NkredKS] / KNkoxS is the concentration of species TRred. 



  

We can now define the rate of substrate transformation, which in 
the usual enzyme assay is measured by the absorbance change 
associated to NADPH oxidation:
 
V = kred [TRoxNADPH] = Etot N S kox kred / (KNkoxS + NkoxS + NkredS + 
NkredKS)         (eq.3)

where the term N S k
ox

 / (KNkoxS + Nk
ox

S + NkredS + NkredKS) 
represents the fraction of the total enzyme in the form of the 
TRoxNADPH complex.

We remark that the equation describing the rate of substrate 
transformation is directly proportional to the concentration of both 
substrates, and to the value of both kinetic constants, as one may 
have expected. We also remark that this function can be applied 
as such, for any data set, provided that the concentration of both 
substrates have been systematically explored. Obviously, V is a 
function of two independent variables and the pertinent graph is 
three-dimensional:  



  



  

Enzymologists are often more familiar with the classical 
Michaelis and Menten representation of steady state 
experiments (or with its linearization, using the Lineweaver 
and Burk plot), and when publishing a paper one is often 
encouraged to use these representations rather than the 
three-dimensional plot depicted in the above paragraph. 

      The simple recipe to obtain a more classical plot is to 
systematically vary the concentration of one substrate while 
keeping fixed that of the other: in this way a typical hyperbolic 
plot can be obtained, from which two parameters formally 
analogous to KM and kcat can be obtained; and by inverting the 
fixed and varied substrate, one obtains steady state 
parameters for both.

This procedure is widely applied, but its implications 
are often neglected.  



  

Suppose that we apply the procedure to TR, and that we 
keep [Trxox], while systematically varying [NADPH]. We obtain a 
hyperbola whose asymptote, (Vmax/Etot = kcat,N,app) at saturating 
concentration of [NADPH] can be estimated by increasing the term 
N to infinity, removing from the rate equation any term that does 
not contain N and then simplifying what is left: 

kcat,N,app = S kox kred / (koxS + kredS + kredKS)

We observe that: 
(i) kcat,N,app is a complex function of both kinetic constants (kox and 
kred), KS and S; 
(ii) kcat,N,app cannot be considered a "constant" or a "parameter" 
since its contains the concentration of the fixed substrate S. 



  

We now turn to the other parameter, namely KM,N,app, which is 
defined as the concentration of the variable substrate required to 
achieve half the maximal rate: 

S kox kred / (koxS + kredS + kredKS) = 
= 2 KM,N,app S kox kred / (KNkoxS + KM,N,appkoxS + KM,N,appkredS + 
KM,N,appkredKS)

After the obvious simplifications, we obtain: 
KNkoxS = KM,N,appkoxS + KM,N,appkredS + KM,N,appkredKS)

and 
KM,N,app = KNkoxS / (koxS + kredS + kredKS)

      We again observe that KM,N,app is not a "parameter" since it is 
a convolution of four constants and one variable; however, KM,N,app 
is directly proportional to KN, the real thermodynamic parameter 
of our kinetic scheme. 



  

It is remarkable that our two apparent parameters bear the 
same relationship with the corresponding intrinsic parameter: 
indeed if we define the term L = koxS / (koxS + kredS + kredKS), it is 
evident that: 

kcat,N,app = L kred

 
KM,N,app = L KN

This proves that each single Michaelis plot is a perfect 
hyperbola, but also that the apparent parameters depend on the 
concentration of the fixed substrate S. 

         We need not bother to define the other two parameters 
kcat,S,app and KM,S,app since the scheme is perfectly symmetric with 
respect to its substrates and thus these parameters are identical 
to the former two except that they invert KS with KN, S with N and 
kred with kox and vice-versa.



  



  

     If one can indeed obtain plausible hyperbola for a two-
substrate enzyme by keeping the concentration of one substrate 
fixed while systematically varying the other, the parameters one 
obtains are complex convolutions of the desired ones, that also 
include the concentration of the fixed substrate. By no means 
these apparent KM and kcat can be considered analogous to the 
corresponding Michaelis parameters for single-substrate enzymes, 
nor can they be compared with similar parameters obtained at a 
different concentration of the fixed substrate. 

      Although in principle one can measure apparent values of 
kcat,N,app , KM,N,app , kcat,S,app and KM,S,app at several concentrations of the 
fixed substrate (Trx) and use the whole set to calculate the four 
intrinsic parameters of the model (KN, kred, KS, and kox) the analysis 
would be statistically unsound. The best procedure is to collect the 
data and to analyze them globally using eq.3; then, if required one 
may represent the data as families of Michaelis hyperbola, as in 
Fig.2. 

      Unfortunately, even the soundest statistical analysis is 
model dependent. 



  

Competitive inhibitors of TR 
      Several competitive inhibitors of TR are known. Some of these 
are molecules which reversibly combine with either the binding site 
of Trxox or NADPH; others are molecules that after an initial 
reversible binding form a covalent bond and become irreversibly 
bound. In the latter case the inhibitor shifts from competitive to 
irreversible (hence non-competitive) with time. We shall consider in 
this lecture only reversible inhibitors (or irreversible ones incubated 
for too short a time for the irreversible bond to be formed). 

      Reversible inhibitors of TR which compete with NADPH exist: 
e.g. indomethacin. These are poorly specific and of limited medical 
interest, thus their characterization has been less extensive than 
that of inhibitors competing with Trx. 

A well characterized inhibitor competing with Trx is 
methylarsonous diiodide, CH3AsI2, an inhibitor that initially binds 
reversibly to the same site of Trx but on long incubation time under 
reducing conditions forms a covalent bond with the active site Cys 
residues. 



  

Methylarsonous diiodide is reported to have a KI of 100 
nM if its affinity is measured at constant [NADPH] and 
variable [Trxox], and a KI of 250 nM if the affinity is measured 
in the opposite way round, i.e. maintaining a constant 
concentration of the competing substrate. 

This is clearly an impossible finding: the same inhibitor 
cannot have two KIs, depending on the measurement 
technique.

        Other similar esamples are: 
- Epigallocatechin-3-gallate which inhibits rat TrxR with KI 64 
and 92 uM;
- Trifluoperazine which inhibits Leishmania TryR with KI 22 
and 31 uM;



  



  

We want to understand how the authors arrived to estimate 
two KIs and which is the good one. 

To do so we write down the following (simplified) kinetic 
model: 

TRox + NADPH <==> TRoxNADPH --> TRred + NADP+     (eq.4)

I-TRred + Trxox <==> I + TRred + Trxox <==> I + TrredTrx
ox   

--> I + TRox 
+ Trxred         (eq.5)

which makes it plain that one and only one KI can be defined for 
this system. 

We do not consider binding of the inhibitor to the oxidized 
enzyme since, even though binding is possible, it does not (or is 
expected not to) interfere with binding of NADPH and reduction of 
the active site; thus TRox would be indistinguishable from I-TRox. 



  

The rate of NADPH oxidation for the reaction scheme of 
eqs. 4 and 5, detremined using the method illustrated above, 
results:
 
V = Etot Nkred Skox KI / (SkoxKNKI + NSkoxKI

 + NkredKSKI + NkredSKI + 
NkredKS[I])       (eq.6)

One can easily verify that in the absence of the inhibitor (i.e. 
[I]=0) eq.6 reduces to eq.3.

Eq.6 is a function of three variables, and its parameters can 
be determined by non linear least squares regression from any 
extensive set of V=f(S,N,[I]). 

However, since in the literature data are often analyzed as  
Michaelis- or Lineweaver- plots in which either substrate is kept 
constant, we may want to know how these look like.  



  

If one keeps constant [NADPH], and varies the 
concentration of the competing substrate Trx at different 
concentrations of the inhibitor, one obtains a set of Michaelis 
plots in which: 

kcat,S,app,I = Nkred kox / (koxKN + Nkox + Nk
red

) = kcat, S, app

      The kcat is obtained, as usual, by increasing S to infinity, by 
removing all terms that do not contain it, and by simplifying those 
which are left. We remark that kcat,S,app, I = kcat,S, app , consistent with 
the expectation that at infinite concentration of Trx, I is 
displaced: the competitive inhibitor is removed form the active 
site by the competing substrate, thus the kcat of the enzyme is 
unchanged (see Fig.3, upper panel).

By contrast, as expected, the competitive inhibitor changes 
the apparent KM of the competing substrate, exactly as it occurs 
in single-substrate enzymes: 

KM,S,app,I = KM,S,app ([I] + KI) / KI



  

Regression of KM,S,app,I vs. [I] yields a straight line with 
slope KM,S,app / KI and intercept KM,S,app ; thus KI = intercept / 
slope.

This is the standard procedure one follows in the case of 
single-substrate enzymes (even though it is not statistically 
sound).



  

 Explaining the lower panel of Fig.3 is a little more difficult: 
after all, the data and lines in the upper panel are identical to those 
one would obtain in the case of competitive inhibition of a single-
substrate enzyme, whereas those in the lower panel of the same 
figure configure quite an atypical case of non-competitive 
inhibition. 

We derive from eq.6 the values of kcat,N,app,I and KM,N,app,I for 
experiments carried out at constant S:
 
kcat,N,app,I = kredSkoxKI / (SkoxKI + kredKSKI + kredSKI + kredKS[I])

KM,N,app,I = KN kcat,N,app / kred

      We remark that: 
(i) the term kcat,N,app,I is a function of [I] (the non competing substrate 
cannot displace the inhibitor), i.e. the inhibitor lowers the apparent 
kcat; 
(ii) since kcat,N,app < kred, KM,N,app,I < KM,N,app, i.e. the inhibitor increases 
the apparent affinity of the enzyme for the non-competing 
substrate.



  

If we compare the apparent kcat in the presence of the inhibitor:
kcat,N,app,I = kredSkoxKI / (SkoxKI + kredKSKI + kredSKI + kredKS[I])

with the one we found in the absence of the inhibitor:
kcat,N,app = S kox kred / (koxS + kredS + kredKS)

the following relationship is immediately apparent:
1 / kcat,N,app,I = 1 / kcat,N,app + KS[I] / SkoxKI  

the above relationship implies that the plot of 1 / kcat,N,app,I vs. [I] is 
a straight line with slope  KS / SkoxKI   and intercept 
1 / kcat,N,app . If one wrongly assumes this system to behave as a 
non competitive inhibitor on a single substrate enzyme, one 
estimates KI as intercept / slope, and obtains:

KI,believed = KI (koxS + kredS + kredKS]) / kred KS

  



  

        Now we can answer our original question: if the two-
substrate enzyme is treated as a single-substrate one by 
keeping either substrate constant, one obtains two estimates of 
the affinity of the inhibitor:

i) when the varied substrate competes with the inhibitor: KI 

ii) when the competing substrate is kept constant, and the non- 
competing substrate is varied:
KI,believed = KI (koxS + kredS + kredKS) / kred KS = 
             = KI [1 + (koxS + kredS) / kred KS]

and we remark that  KI,believed > KI (as found by many unaware 
researchers).
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