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 Abstract 
      Cooperative ligand binding is a fundamental function of a large 
number of proteins, whose physiological relevance spans from 
transport, catalysis and regulation of the cell cycle. The reversible 
oxygen combination to hemoglobin is a prototype of cooperativity and 
has been convincingly demonstrated to be a consequence of allostery, 
the ability of the protein to adopt either of (at least) two structural and 
energy states. The simplest theoretical framework that correlates 
cooperativity and allostery is the two-state model originally proposed by 
Monod, Wyman and Changeux (MWC) in 1965, whose critical 
assumption is that of perfect structural symmetry. 
      This lecture is meant to provide a general intrduction to some crucial 
properties of, and concepts relating to, cooperativity and allostery, 
namely: 
1) a taxonomy of chemical linkage types 
2) heterotropic linkage 
3) homotropic linkage 
4) cooperativity as a special case of linkage 
5) homotropic and heterotropic linkage in hemoglobin 

6) the two-state model of cooperativity and some of its alternatives. 



  

1. The discovery of homotropic and heterotropic 
linkage. 

   In 1904 Bohr, Hasselbalch and Krogh published, in the same paper, 
two momentous biochemical discoveries, under the title Concerning a 
Biologically Important Relationship - The Influence of the Carbon 
Dioxide Content of Blood on its Oxygen Binding. They found that: 

(i) the O2 affinity of hemoglobin (Hb) increases as the gas 
concentration (or partial pressure) increases; i.e. saturation is a 
sigmoidal, rather than hyperbolical, function of PO2. This effect was, 
and still is, called cooperativity. Cooperative O2 binding by Hb was the 
first member of a large class of events that we call homotropic 
linkage. 

(ii) The O2 affinity of Hb decreases as the hydrogen ion and carbon 
dioxide concentrations increase. The effect of pH is appropriately 
called the Bohr effect. These phenomenona were the first instances of 
the large class of events that we call heterotropic linkage. 



  

Bohr's original data:



  

 2. A general definition of chemical linkage. 

    In modern terms, Bohr had found two tipes of chemical linkage. 

    Linkage occurs whenever a (biological) macromolecule binds two 
or more ligands to the same, or to equivalent, or to different sites; 
and each ligand influences the binding affinity of the other(s). 

     Thermodynamics dictates that if ligand #1 influences the affinity of 
the macromolecule for ligand #2, then the opposite is also true, and 
ligand #2 affects the affinity for ligand #1, in the same direction. This 
point (and many others) were demonstrated by Jeffries Wyman in 
1948, and in an extended form, in 1964. 



  

     For the purposes of this lecture, we adopt the definitions by Wyman 
and Gill, i.e.: 

(i) if two different ligands compete for the same binding site of the 
macromolecule, we have a case of identical linkage: e.g. O2 and CO 
competing for the heme iron of myoglobin (Mb). 

(ii) if two (or more) molecules of the same ligand bind to two (or more) 
equivalent binding sites of the same macromolecule, we have a case of 
homotropic linkage: e.g. O2 and Hb,Hb being a tetramer and binding 
four molecules of O2. If the ligand affinity increases as more ligand is 
bound we have positive homotropic linkage (i.e. cooperativity); 
otherwise we have negative homotropic linkage. 
Take home message #1: homotropic linkage requires more than one 
binding site for the same ligand. 

(iii) if two (or more) different ligands bind to two (or more) non 
equivalent binding sites we have heterotropic linkage (positive if each 
ligand increases the affinity for the other, negative otherwise): e.g. the 
Bohr effect or the effect of DPG on the O2 affinity of Hb. 
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3. The physical chemistry of heterotropic linkage with 
1:1 stoichiometry. 

   The thermodynamics of heterotropic linkage was described in 
quantitative terms by Jeffries Wyman in 1948. 



  

The pertinent equilibrium constants are defined as:

KL = [P] [L] / [PL]  (eqn. 3a)

KM = [P] [M] / [PM]               (eqn. 3b)
MK

L
 = [PM] [L] / [PML]           (eqn. 3c)

LKM = [PL] [M] / [PML]           (eqn. 3d)

The chemical reaction scheme for a protein (P) binding two 
different ligands (L and M) to two different sites is as follows: 



  

The linkage is defined positive if MKL<K
L
 (ligand M increases the 

affinity of the protein for ligand L), negative otherwise.

Thermodynamics requires that if MK
L
<KL then  LKM<KM, and vice-

versa.

We can visually imagine a case of negative heterotropic linkage as 
in the cartoon below:



  

   Four states of P are populated in our system: P, PM, PL, PML; 
we can chose any of them as the reference species and express 
all concentrations as a function of the concentration of the 
reference species. We take P as the reference species and we 
obtain:

[PL] = [P] [L] / KL                                                   (eqn. 3e)
[PM] = [P] [M] / KM                                              (eqn. 3f)
[PML] = [PM] [L] / MKL = [P] [M] [L] / (KM MK

L
)        (eqn. 3g)

[PML] = [PL] [M] / LK
M
 = [P] [M] [L] / (KL LKM)     (eqn. 3h)

The last two equations yield: 
KM MKL = KL 

LKM       or       LKM = KM MKL / KL       (eqn. 3i) 

Take home message #2: as a consequence of energy 
conservation, one of the equilibrium constants of a thermodynamic 
square can be derived from the other three. 
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   The binding polynomial of P is the sum of the concentrations of all 
species of P, expressed as functions of the reference species: 

   [Ptot] = [P] [(1 + [L] / KL)  +  [M]/KM (1 + [L] / 
MKL)]       (eqn. 3j) 

It is important to keep track of the chemical meaning of the terms of the 
binding polynomial: the first represents [P], the second [PL], the third 
[PM] and the fourth [PML]. 

The fractional saturation of P with L results:

YL = ([PL] + [PML]) / ([P] + [PL] + [PM] + [PML]) = 

                   [L]/KL + [M][L]/KM 
MKL           

    =   ---------------------------------------------          (eqn. 3k) 
          (1 + [L]/KL) + [M]/KM (1 + [L]/ 

MKL)   



  

We remark that: 

(i) if MKL = KL, the presence of M has no effect on the binding of L, and 
our equation reduces to:
 
      YL = [L] / (KL + [L]) 

(ii) if [M] = 0 (and, of course, [PM] = 0 and [PML] = 0) our equation 
reduces to: 

      YL = [PL] / ([P] + [PL]) = [L] / (KL + [L]) 

(iii) if [M] >> KM and [M] >> LKM = KM MKL/KL 
(this condition implies that only protein species containing M are 
populated, i.e. [P] = 0 and [PL] = 0), our equation reduces to: 

      YL = [PML] / ([PM] + [PML]) = [L] / (MKL + [L]) 



  

   If none of the above considered simplifications apply, we should use 
the full equation for YL and we obtain a value of KL app which is 
intermediate between KL and MKL. 

   The experiment is usually carried out at fixed concentration of M and 
variable concentration of L, and one can rewrite for simplicity eqn. 3k 
using the following terms: 

α = MKL KM + [M] KL 

β = KL 
MKL (KM + [M])

 
YL = [L] α / (β + [L] α) = [L] / (β/α + [L])       (eqn. 3k') 

      Eqn. 3k' describes a hyperbola, and is identical to a simple binding 
equation, except that the apparent dissociation constant, β/α, is a 
complex function of three constants (KL, 

MKL, and KM) and one variable 
([M], which however is kept constant during each single determination). 



  

Heterotropic linkage in a monomeric protein: ligand M changes the affinity of the 
protein for ligand L, but does not cause cooperativity. Ligand binding isotherms are 
hyperbolic, and simply right (or left) shifted. The L1/2 is a hyperbolic function of [M].



  

4. Ligand binding to the non-cooperative homodimer

   The thermodynamic properties of the oligomer will be described for 
the simplest possible case, that of a symmetric homodimer 

P + 2 L <==> PL + L <==> PL2       (eqn. 4a) 

    In this system each subunit binds one molecule of the ligand and is 
insensitive to what happens to its partner in the dimer, hence the 
binding polynomial and the fractional saturation for the subunits are 
identical to the ones we wrote for the monomeric protein. However, 
we may not be satisfied with the above description, and we may ask 
how liganded and unliganded subunits are distributed within dimers, 
i.e. to what extent singly and fully liganded dimers are populated. In 
the absence of favorable or unfavorable interactions between 
monomers in the dimer, the distribution of liganded and unliganded 
subunits within dimers is expected to be statistical, i.e. binomial: 

[fraction of unliganded subunits + fraction of liganded subunits]number of binding 

sites = [ (K / K+[L]) + ([L] / K+[L]) ]2   = ( K2 + 2 K [L] + [L]2 ) / (K + [L])2   



  

   In the equation:
( K2 + 2 K [L] + [L]2 ) / (K + [L])2 

we recognize:
the fraction of unliganded dimers:  [P] / [P]tot = K2 / (K + [L])2 ;
that of singly liganded dimers: [PL] / [P]

tot
 = 2 K [L] / (K + [L])2 ;

that of doubly liganded dimers: [PL2] / [P]tot = [L]2  / (K + [L])2 

   If we take the species [P] as a reference, and express all other 
species as a function of  [P], we obtain:
   [PL] = [P] 2 [L] / K 
   [PL2] = [P] [L]2 / K2

which correspond to the binding polynomial and ligand saturation:
 
[P]tot = [P] (1 + 2 [L] / K + [L]2 / K2)       (eqn. 4c) 

 2 [L] / K + 2 [L]2 / K2               [L] / K             [L]
YL = ----------------------------------- = --------------- = ------------  (eqn. 4d)

   2 (1 + 2 [L] / K + [L]2 / K2)        1 + [L] / K        K + [L]



  

A dimeric protein which binds two molecules of the same ligand yields a 
population of ligation intermediates, but the overall fraction of bound sites 
remains a hyperbolic function of the ligand's concentration, unless some other 
condition occurs (e.g. intrinsic cooperativity).



  

    The classical thermodynamic view of cooperativity, formulated by 
Gilbert W. Adair in 1925,  holds that “something” happens in the 
structure of the cooperative as a consequence of the binding of the 
first ligand, so that the affinity of the second ligand increases; i.e. the 
binding polynomial and ligand saturation functions of a symmetric 
homodimer become:
 
[P]tot = [P] (1 + 2 [L] / K1 + [L]2 / K1K2)       (eqn. 4e) 

 2 [L] / K1 + 2 [L]2 / K1K2           
YL = ----------------------------------------          (eqn. 4f)

   2 (1 + 2 [L] / K1 + [L]2 / K1K2)       

And the ligand binding isotherm is sigmoidal, rather than hyperbolic if:
               K1 > K2 

   Linus Pauling proposed in 1936 that in hemoglobin a liganded 
subunit forms a “facilitating” weak bond with the neighbouring ones, 
such that:    
              K2  = K1 / α



  

Positive cooperativity implies that the partially liganded species are less 
populated than expected; negative cooperativity implies that the partially 
liganded species are more populated than expected.



  

    Vertebrate hemoglobins are tetramers (only a handful of Hbs from 
molluscs are cooperative homdimers)! As a consequence the binding 
polynomial according to Adair equation results:

[P]tot = [P] (1 + 4 [L] / K1 + 6 [L]2 / K1K2 +  4 [L]3 / K1K2K3 + 
                  + [L]4 / K1K2K3K4)   (eqn. 4g) 

            [L] / K1 + 3 [L]2 / K1K2 +  3 [L]3 / K1K2K3 + [L]4 / K1K2K3K4   
YL = ---------------------------------------------------------------------------------       

  1 + 4 [L] / K1 + 6 [L]2 / K1K2 +  4 [L]3 / K1K2K3 + [L]4 / K1K2K3K4       

and cooperativity arises if  K1 > K4.
 
    Cooperativity does not require that an ordered sequence   
K1 > K2 >  K3 > K4   is present, but most “sequential” cooperativity 
models hypothesize orderly increasing cooperativity factors α, β, etc.



  

5. In a symmetric oligomer heterotropic linkage may be a 
cause of cooperativity.

 
   What happens if we have heterotropic linkage in a homodimer? We 
shall consider only the simplest case, i.e. the thermodynamically 
symmetric homodimer, whose monomers are equivalent. Moreover 
the dimer is non cooperative for ligand L, both in the absence and in 
the presence of saturating amounts of ligand M: 



  

   Because of the symmetry postulates we applied, the equilibrium 
constants are the same as in the case of the monomer, considered 
above (eqns. 3a to 3d), with the only addition of LLKM. The reason why 
we need this additional constant is that the system composed by the 
L- monoliganded and diliganded species forms a second 
thermodynamic square, analogous to the one described by (eqn. 3i):
 

LKM MKL = KL 
LLKM       or       LLKM = LKM MKL / KL = KM (MKL / KL)

2

    
   We also remark that the energy profile is again depicted for the 
case of negative heterotropic linkage, and that depending of the 
concentrations of [M] and [L], the preferred species would be those 
highlighted in red, with the order of appearance indicated by the 
arrows. Thus, if we start with the protein and nothing else in solution 
we only have P; when we add M, PM becomes populated; and as we 
increase the concentration of L we populate first PML and next PL2, 
while M is released. The dashed circle indicates the area of the 
energy profile which corresponds to the one considered in the above 
section 3. 



  

    The binding polynomial of our system is: 

    [P]tot =  [P] [(1 + [L]/KL)
2 + [M]/KM (1 + [L]/MKL)2]       (eqn. 5a; cfr. 3j) 

  A graphical representation of our system, which highlights the 
symmetry of the two binding sites is as follows: 



  

    The fraction of ligand saturation for ligand L results:

          2 [L]/KL (1 + [L]/KL) + 2 [M][L] / KM 
MKL(1 + [L]/MKL)

 YL = -------------------------------------------------------------------  (eqn. 5b)
                 2 (1 + [L]/KL)

2   +  2 [M]/KM (1 + [L]/MKL)2

  Under appropriate experimental conditions, eqn. 5b (to be 
compared with 3k), yields a sigmoid, i.e. cooperative, binding 
isotherm. 

    One may ask how the linked heterotropic ligand M can introduce 
positive homotropic cooperativity for ligand L in the protein; but this 
question is ill conceived: cooperativity is the consequence of 
symmetry, not of the binding of M. The ligand M only makes the 
relationship between symmetry and cooperativity evident. 

Take home message #6: heterotropic linkage may induce 
cooperativity in an otherwise non-cooperative oligomeric protein, if 
the symmetry requirement is fulfilled. 



  

    6. Does hemoglobin need the heterotropic 
effector? The two-state allosteric model by Monod, 

Wyman and Changeux. 

    In 1963 J. Monod coined the concept of allostery (greek: other 
structure) to describe a protein stable in two different three dimensional 
structures. Monod's interest at the time was focussed on the 
heterotropic regulation of enzymes; but shortly afterward he was to 
discover another case of allosteric regulation, namely the repressor 
protein of the operon Lac (for which he was awarded the Nobel Prize 
for Medicine and Physiology). 

    If Wyman's interpretation of heterotropic linkage was based on a 
pure, disembodied thermodynamic formalism, Monod's one had a sort 
of esthetical connection to the shape of proteins, as real objects, and 
his key point was about molecular symmetry. Monod was fascinated by 
what he called "nature's elegance" and he is reported to have said that 
elegance does not prove a model true, but lack of elegance certainly 
proves it false. 



  

    The allosteric model postulates that the protein is a symmetric 
oligomer, made up of identical (or at least equivalent) subunits, 
stable in two different quaternary conformations (called R and T) 
with different affinities for the ligand.
    Allostery in a protein oligomer yields a thermodynamic system 
similar to the one considered in the preceding section, with one 
important difference: the two structural states are to be considered 
as conformational isomers of the protein, that freely equilibrate in 
the absence of any ligand. The reaction pathway and energy 
profile of ligand binding to an allosteric homodimer is as follows: 



  

    The binding polynomial for this system is the sum of the two binding 
polynomials of the R and T state, weigthed by the allosteric constant 
L0, which describes the isomerization equilibrium R<==>T in the 
absence of the ligand. For a homodimer:

    [P]tot =  [R0] [(1 + [L] / KR)2 + L0 (1 + [L] / KT)2]        (eqn. 6a) 

      To generalize to a n-subunit protein we only need to substitute the 
exponent with the number of binding sites: e.g. for a tetrameric 
hemoglobin:

    [Ptot] =  [R0] [(1 + [L]/KR)4 + L0 (1 + [L]/KT)4]            (eqn. 6b) 

    The fraction of liganded sites for a n-subunit protein results:

          [L]/KR (1 + [L]/KR)n-1  +  L0 [L]/KT (1 + [L]/KT)n-1

   Y = -----------------------------------------------------------      (eqn. 6c) 
                    (1 + [L]/KR)n + L0 (1 + [L]/KT)n



  

Key features of the two-state model include:

(i) cooperative proteins are symmetric oligomers stable in two (tertiary 
and quaternary) conformations called T and R.

(ii) The T- and R- states/structures are both populated and in 
equilibrium with each other both in the presence and in the absence 
of the ligand; they should be considered as conformational isomers.

(iii) The T-state is predominant in the absence of the ligand and has 
low affinity; the R-state is predominant in the presence of excess 
ligand and has high affinity. At some point in the ligand binding 
isotherm the predominant state must change (switch-over point).

(iv) The T- and R- states are fully symmetric and non-cooperative. 
Cooperativity is a consequence of the ligand-dependent structure 
change.

(v) All ligation intermediates are fully symmetric and either have the T- 
or the R-structure. No intermediate structures exist and no state 
exists in which T-like and R-like subunits are mixed.



  

7. The structure of hemoglobin: a primer.

  The widespread adoption of the two-state model to explain 
hemoglobin cooperativity goes beyond its simplicity and its ability to 
explain a huge array of experimental data, and refers to its almost 
incredible predictive capabilities and its striking adherence to structural 
details discovered long after its formulation.

    Hemoglobin is a tetramer made up of two types of subunits called α 
and β. In order to name the four subunits the notation α1,α2,β1 and β2 is 
universally adopted. The subunits' structure is very similar (the “globin 
fold”) and consists of 8 α-helices named A thorugh H plus short inter-
helical segments. The interfaces between the subunits are of the type 
that Monod called isologous, i.e. symmetrical. Each α-subunits 
contacts the two βs and vice-versa, with the pseudo-symmetric contact 
regions:
   α1H-β1B, α1G-β1G, and α1B-β1H for the α1β1 interface 
and 
   α1C-β2FG, and α1FG-β2C for the α1β2 interface.



  

The α1β1 interface of human hemoglobin. 
Red/purple: helices A,B; green C,D,E,F; yellow/orange: G,H



  

    A schematic representation of the two-states allosteric model, as 
applied to hemoglobin is as follows (notice that the allosteric 
interface, where the ligand-dependent structural change occurs is 
symmetric and isologous): 



  

A short list of some experimental data on hemoglobin that 
strongly support the two-state allosteric model or some of its 

variants.

(i) Only two families of 3D structures have been discovered by X-ray 
crystallography: the low affinity (T) family with very limited variability, 
and the high affinity R family, with greater variability (structures R, R2, 
R3, etc.).

(ii) The structures of the “poorly populated” state THb(O2)4 has been 
solved, whereas the other poorly populated state (unliganded RHb) up 
to now has only been obtained by chemical modification or site 
directed mutagenesis.

(iii) The structures of the diliganded ligation intermediates α2
COβ2 and 

α2β2
CO have been obtained; these are unequivocally T-like, and no 

intermediate has been crystallized in an intermediate, neither T-nor R 
structure; moreover no intermediate presents an asymmetric structure 
at the interfaces.



  

(iv) The kinetic rate constants for the allosteric quaternary structural 
change have been measured, taking advantage of structure-specific 
spectroscopic features; these satisfactorily agree with those 
calculated from equilibrium binding experiments.

(v) Cooperativity is abolished if ligand binding experiments are carried 
out under conditions in which the quaternary structural change is 
prevented (e.g. in crystals; in silica  gels). Hemoglobin blocked in the 
R-conformation has high affinity, in the T-conformation it has low 
affinity. The same applies to chemically modified, site directed 
mutant, and CP digested hemoglobins.



  

Experimental results on hemoglobin that require an 
extension of the two-state model.

 
    In spite of its success in explaining and predicting the functional 
behaviour of hemoglobin, the two-state model also has well known 
defects and failures, that have required its amendement:

(i) in its original formulation the model ascribed heterotropic effects to 
the preferential binding of the effector to either the T or the R state; as 
a consequence it predicted that heterotropic effects would be limited 
to variations of the allosteric constant L0. However, it has been 
demonstrated long ago that both KR and KT depend on heterotropic 
effectors, and thus require an extension of the model.

(ii) The time course of oxygen dissociation from THbO2 cannot be fitted 
to one exponential, an observation that was riginally explained 
invoking the functional inequivalence of the α and β subunits. 
Successive experiments have demonstrated that the functional 
inequivalence of the subunits is minimal, thus this result is at present 
unexplained.



  

Conclusions

Hemoglobin is prototype model of cooperativity, in which we recognize:

(i) an intrinsic or true cooperativity present also under experimental 
conditions in which allosteric effectors are either absent or present at 
concentrations insufficient to cause significant binding (e.g. pH = 9 in 
the absence of chloride, CO2 and phosphates). K. Imai reports for 
these conditions a P1/2 O2 of 1 mmHg, a Hill coefficient of 2.35 and a 
ratio K1 / K4 (or KT / KR) = 22. Under these experimental conditions, Hb 
seems to obey a pure two-state model.

(ii) Under physiological conditions cooperativity is enhanced by 
heterotropic effects, which add a quota of extrinsic or pseudo- 
cooperativity, due to preferential binding to the T-state and to a direct 
effect on KT. E.g. Imai reports P1/2 O2 of 14 mmHg, a Hill coefficient of 
3.1 and a ratio K1 / K4 (or KT / KR) = 470 at physiological pH, 0.1 M 
chloride and 2 mM DPG.
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